Metamath Proof Explorer


Theorem ralrimi

Description: Inference from Theorem 19.21 of Margaris p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999) Shortened after introduction of hbralrimi . (Revised by Wolf Lammen, 4-Dec-2019)

Ref Expression
Hypotheses ralrimi.1 𝑥 𝜑
ralrimi.2 ( 𝜑 → ( 𝑥𝐴𝜓 ) )
Assertion ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimi.1 𝑥 𝜑
2 ralrimi.2 ( 𝜑 → ( 𝑥𝐴𝜓 ) )
3 1 nf5ri ( 𝜑 → ∀ 𝑥 𝜑 )
4 3 2 hbralrimi ( 𝜑 → ∀ 𝑥𝐴 𝜓 )