Metamath Proof Explorer


Theorem ralrimia

Description: Inference from Theorem 19.21 of Margaris p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses ralrimia.1 𝑥 𝜑
ralrimia.2 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
Assertion ralrimia ( 𝜑 → ∀ 𝑥𝐴 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimia.1 𝑥 𝜑
2 ralrimia.2 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
3 2 ex ( 𝜑 → ( 𝑥𝐴𝜓 ) )
4 1 3 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝜓 )