Metamath Proof Explorer
Description: Inference from Theorem 19.21 of Margaris p. 90 (restricted quantifier
version). (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
ralrimia.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
ralrimia.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
|
Assertion |
ralrimia |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralrimia.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
ralrimia.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
3 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
4 |
1 3
|
ralrimi |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |