Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralrimivv.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜓 ) ) | |
Assertion | ralrimivv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → 𝜓 ) ) | |
2 | 1 | expd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜓 ) ) ) |
3 | 2 | ralrimdv | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
4 | 3 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) |