Metamath Proof Explorer


Theorem ralrimivv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004)

Ref Expression
Hypothesis ralrimivv.1 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜓 ) )
Assertion ralrimivv ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimivv.1 ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜓 ) )
2 1 expd ( 𝜑 → ( 𝑥𝐴 → ( 𝑦𝐵𝜓 ) ) )
3 2 ralrimdv ( 𝜑 → ( 𝑥𝐴 → ∀ 𝑦𝐵 𝜓 ) )
4 3 ralrimiv ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )