Step |
Hyp |
Ref |
Expression |
1 |
|
rngop.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) |
2 |
|
ralrnmpo.2 |
⊢ ( 𝑧 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) |
3 |
1
|
rnmpo |
⊢ ran 𝐹 = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 } |
4 |
3
|
raleqi |
⊢ ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑧 ∈ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 } 𝜑 ) |
5 |
|
eqeq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 = 𝐶 ↔ 𝑧 = 𝐶 ) ) |
6 |
5
|
2rexbidv |
⊢ ( 𝑤 = 𝑧 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 ) ) |
7 |
6
|
ralab |
⊢ ( ∀ 𝑧 ∈ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑤 = 𝐶 } 𝜑 ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
8 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
9 |
|
r19.23v |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
10 |
9
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
11 |
8 10
|
bitr2i |
⊢ ( ∀ 𝑧 ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
12 |
4 7 11
|
3bitri |
⊢ ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
13 |
|
ralcom4 |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( 𝑧 = 𝐶 → 𝜑 ) ) |
14 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
15 |
14
|
albii |
⊢ ( ∀ 𝑧 ∀ 𝑦 ∈ 𝐵 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
16 |
13 15
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ) |
17 |
|
nfv |
⊢ Ⅎ 𝑧 𝜓 |
18 |
17 2
|
ceqsalg |
⊢ ( 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ 𝜓 ) ) |
19 |
18
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ 𝜓 ) ) |
20 |
|
ralbi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ 𝜓 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
21 |
19 20
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ( 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
22 |
16 21
|
bitr3id |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
23 |
22
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
24 |
|
ralbi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
25 |
23 24
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ( ∃ 𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
26 |
12 25
|
syl5bb |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |