Metamath Proof Explorer


Theorem ralrnmpt

Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker ralrnmptw when possible. (Contributed by Mario Carneiro, 20-Aug-2015) (New usage is discouraged.)

Ref Expression
Hypotheses ralrnmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
ralrnmpt.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
Assertion ralrnmpt ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralrnmpt.1 𝐹 = ( 𝑥𝐴𝐵 )
2 ralrnmpt.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 1 fnmpt ( ∀ 𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴 )
4 dfsbcq ( 𝑤 = ( 𝐹𝑧 ) → ( [ 𝑤 / 𝑦 ] 𝜓[ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ) )
5 4 ralrn ( 𝐹 Fn 𝐴 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧𝐴 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ) )
6 3 5 syl ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑧𝐴 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ) )
7 nfv 𝑤 𝜓
8 nfsbc1v 𝑦 [ 𝑤 / 𝑦 ] 𝜓
9 sbceq1a ( 𝑦 = 𝑤 → ( 𝜓[ 𝑤 / 𝑦 ] 𝜓 ) )
10 7 8 9 cbvral ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 )
11 10 bicomi ( ∀ 𝑤 ∈ ran 𝐹 [ 𝑤 / 𝑦 ] 𝜓 ↔ ∀ 𝑦 ∈ ran 𝐹 𝜓 )
12 nfmpt1 𝑥 ( 𝑥𝐴𝐵 )
13 1 12 nfcxfr 𝑥 𝐹
14 nfcv 𝑥 𝑧
15 13 14 nffv 𝑥 ( 𝐹𝑧 )
16 nfv 𝑥 𝜓
17 15 16 nfsbc 𝑥 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓
18 nfv 𝑧 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓
19 fveq2 ( 𝑧 = 𝑥 → ( 𝐹𝑧 ) = ( 𝐹𝑥 ) )
20 19 sbceq1d ( 𝑧 = 𝑥 → ( [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓[ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ) )
21 17 18 20 cbvral ( ∀ 𝑧𝐴 [ ( 𝐹𝑧 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 )
22 6 11 21 3bitr3g ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ) )
23 1 fvmpt2 ( ( 𝑥𝐴𝐵𝑉 ) → ( 𝐹𝑥 ) = 𝐵 )
24 23 sbceq1d ( ( 𝑥𝐴𝐵𝑉 ) → ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓[ 𝐵 / 𝑦 ] 𝜓 ) )
25 2 sbcieg ( 𝐵𝑉 → ( [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )
26 25 adantl ( ( 𝑥𝐴𝐵𝑉 ) → ( [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )
27 24 26 bitrd ( ( 𝑥𝐴𝐵𝑉 ) → ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓𝜒 ) )
28 27 ralimiaa ( ∀ 𝑥𝐴 𝐵𝑉 → ∀ 𝑥𝐴 ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓𝜒 ) )
29 ralbi ( ∀ 𝑥𝐴 ( [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓𝜒 ) → ( ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )
30 28 29 syl ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑥𝐴 [ ( 𝐹𝑥 ) / 𝑦 ] 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )
31 22 30 bitrd ( ∀ 𝑥𝐴 𝐵𝑉 → ( ∀ 𝑦 ∈ ran 𝐹 𝜓 ↔ ∀ 𝑥𝐴 𝜒 ) )