Metamath Proof Explorer


Theorem ralrot3

Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021)

Ref Expression
Assertion ralrot3 ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝜑 )

Proof

Step Hyp Ref Expression
1 ralcom ( ∀ 𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑧𝐶𝑦𝐵 𝜑 )
2 1 ralbii ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑥𝐴𝑧𝐶𝑦𝐵 𝜑 )
3 ralcom ( ∀ 𝑥𝐴𝑧𝐶𝑦𝐵 𝜑 ↔ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝜑 )
4 2 3 bitri ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑧𝐶𝑥𝐴𝑦𝐵 𝜑 )