Description: Rotate three restricted universal quantifiers. (Contributed by AV, 3-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | ralrot3 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralcom | ⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐶 ∀ 𝑦 ∈ 𝐵 𝜑 ) |
3 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ 𝐶 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐶 𝜑 ↔ ∀ 𝑧 ∈ 𝐶 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) |