| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralsng.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  { 𝐴 } 𝜑  ↔  ∀ 𝑥 ( 𝑥  ∈  { 𝐴 }  →  𝜑 ) ) | 
						
							| 3 |  | velsn | ⊢ ( 𝑥  ∈  { 𝐴 }  ↔  𝑥  =  𝐴 ) | 
						
							| 4 | 3 | imbi1i | ⊢ ( ( 𝑥  ∈  { 𝐴 }  →  𝜑 )  ↔  ( 𝑥  =  𝐴  →  𝜑 ) ) | 
						
							| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  { 𝐴 }  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) | 
						
							| 6 | 2 5 | bitri | ⊢ ( ∀ 𝑥  ∈  { 𝐴 } 𝜑  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) | 
						
							| 7 |  | elisset | ⊢ ( 𝐴  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝐴 ) | 
						
							| 8 | 1 | pm5.74i | ⊢ ( ( 𝑥  =  𝐴  →  𝜑 )  ↔  ( 𝑥  =  𝐴  →  𝜓 ) ) | 
						
							| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 11 |  | 19.23v | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜓 ) ) | 
						
							| 12 | 11 | a1i | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜓 )  ↔  ( ∃ 𝑥 𝑥  =  𝐴  →  𝜓 ) ) ) | 
						
							| 13 |  | pm5.5 | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ( ∃ 𝑥 𝑥  =  𝐴  →  𝜓 )  ↔  𝜓 ) ) | 
						
							| 14 | 10 12 13 | 3bitrd | ⊢ ( ∃ 𝑥 𝑥  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  𝜓 ) ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  𝜓 ) ) | 
						
							| 16 | 6 15 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥  ∈  { 𝐴 } 𝜑  ↔  𝜓 ) ) |