Metamath Proof Explorer
Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)
|
|
Ref |
Expression |
|
Hypotheses |
rexsngf.1 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
rexsngf.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
ralsngf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexsngf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 2 |
|
rexsngf.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
ralsnsg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 |
1 2
|
sbciegf |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 5 |
3 4
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |