Metamath Proof Explorer


Theorem ralsnsg

Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion ralsnsg ( 𝐴𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝜑 ) )
2 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
3 2 imbi1i ( ( 𝑥 ∈ { 𝐴 } → 𝜑 ) ↔ ( 𝑥 = 𝐴𝜑 ) )
4 3 albii ( ∀ 𝑥 ( 𝑥 ∈ { 𝐴 } → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
5 1 4 bitri ( ∀ 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
6 sbc6g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) )
7 5 6 bitr4id ( 𝐴𝑉 → ( ∀ 𝑥 ∈ { 𝐴 } 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )