| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ss |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 2 |
|
id |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 3 |
2
|
pm4.71rd |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 4 |
3
|
imbi1d |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ) ) |
| 5 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 6 |
4 5
|
bitrdi |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 7 |
6
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 8 |
1 7
|
sylbi |
⊢ ( 𝐴 ⊆ 𝐵 → ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 9 |
|
albi |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) ) |
| 11 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 12 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
| 13 |
10 11 12
|
3bitr4g |
⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |