Metamath Proof Explorer


Theorem ralss

Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)

Ref Expression
Assertion ralss ( 𝐴𝐵 → ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 df-ss ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 id ( ( 𝑥𝐴𝑥𝐵 ) → ( 𝑥𝐴𝑥𝐵 ) )
3 2 pm4.71rd ( ( 𝑥𝐴𝑥𝐵 ) → ( 𝑥𝐴 ↔ ( 𝑥𝐵𝑥𝐴 ) ) )
4 3 imbi1d ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝑥𝐴𝜑 ) ↔ ( ( 𝑥𝐵𝑥𝐴 ) → 𝜑 ) ) )
5 impexp ( ( ( 𝑥𝐵𝑥𝐴 ) → 𝜑 ) ↔ ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) )
6 4 5 bitrdi ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ) )
7 6 alimi ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) → ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ) )
8 1 7 sylbi ( 𝐴𝐵 → ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ) )
9 albi ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ↔ ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ) → ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ) )
10 8 9 syl ( 𝐴𝐵 → ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) ) )
11 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
12 df-ral ( ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) ↔ ∀ 𝑥 ( 𝑥𝐵 → ( 𝑥𝐴𝜑 ) ) )
13 10 11 12 3bitr4g ( 𝐴𝐵 → ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥𝐵 ( 𝑥𝐴𝜑 ) ) )