Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
raltp
Metamath Proof Explorer
Description: Convert a universal quantification over an unordered triple to a
conjunction. (Contributed by NM , 13-Sep-2011) (Revised by Mario
Carneiro , 23-Apr-2015)
Ref
Expression
Hypotheses
raltp.1
⊢ 𝐴 ∈ V
raltp.2
⊢ 𝐵 ∈ V
raltp.3
⊢ 𝐶 ∈ V
raltp.4
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
raltp.5
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) )
raltp.6
⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) )
Assertion
raltp
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) )
Proof
Step
Hyp
Ref
Expression
1
raltp.1
⊢ 𝐴 ∈ V
2
raltp.2
⊢ 𝐵 ∈ V
3
raltp.3
⊢ 𝐶 ∈ V
4
raltp.4
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
5
raltp.5
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) )
6
raltp.6
⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) )
7
4 5 6
raltpg
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) )
8
1 2 3 7
mp3an
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) )