Metamath Proof Explorer


Theorem raltp

Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses raltp.1 𝐴 ∈ V
raltp.2 𝐵 ∈ V
raltp.3 𝐶 ∈ V
raltp.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
raltp.5 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
raltp.6 ( 𝑥 = 𝐶 → ( 𝜑𝜃 ) )
Assertion raltp ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 raltp.1 𝐴 ∈ V
2 raltp.2 𝐵 ∈ V
3 raltp.3 𝐶 ∈ V
4 raltp.4 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
5 raltp.5 ( 𝑥 = 𝐵 → ( 𝜑𝜒 ) )
6 raltp.6 ( 𝑥 = 𝐶 → ( 𝜑𝜃 ) )
7 4 5 6 raltpg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓𝜒𝜃 ) ) )
8 1 2 3 7 mp3an ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓𝜒𝜃 ) )