Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Unordered and ordered pairs raltp  
				
		 
		
			
		 
		Description:   Convert a universal quantification over an unordered triple to a
       conjunction.  (Contributed by NM , 13-Sep-2011)   (Revised by Mario
       Carneiro , 23-Apr-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						raltp.1 ⊢  𝐴   ∈  V  
					
						raltp.2 ⊢  𝐵   ∈  V  
					
						raltp.3 ⊢  𝐶   ∈  V  
					
						raltp.4 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
					
						raltp.5 ⊢  ( 𝑥   =  𝐵   →  ( 𝜑   ↔  𝜒  ) )  
					
						raltp.6 ⊢  ( 𝑥   =  𝐶   →  ( 𝜑   ↔  𝜃  ) )  
				
					Assertion 
					raltp ⊢   ( ∀ 𝑥   ∈  { 𝐴  ,  𝐵  ,  𝐶  } 𝜑   ↔  ( 𝜓   ∧  𝜒   ∧  𝜃  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							raltp.1 ⊢  𝐴   ∈  V  
						
							2 
								
							 
							raltp.2 ⊢  𝐵   ∈  V  
						
							3 
								
							 
							raltp.3 ⊢  𝐶   ∈  V  
						
							4 
								
							 
							raltp.4 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
						
							5 
								
							 
							raltp.5 ⊢  ( 𝑥   =  𝐵   →  ( 𝜑   ↔  𝜒  ) )  
						
							6 
								
							 
							raltp.6 ⊢  ( 𝑥   =  𝐶   →  ( 𝜑   ↔  𝜃  ) )  
						
							7 
								4  5  6 
							 
							raltpg ⊢  ( ( 𝐴   ∈  V  ∧  𝐵   ∈  V  ∧  𝐶   ∈  V )  →  ( ∀ 𝑥   ∈  { 𝐴  ,  𝐵  ,  𝐶  } 𝜑   ↔  ( 𝜓   ∧  𝜒   ∧  𝜃  ) ) )  
						
							8 
								1  2  3  7 
							 
							mp3an ⊢  ( ∀ 𝑥   ∈  { 𝐴  ,  𝐵  ,  𝐶  } 𝜑   ↔  ( 𝜓   ∧  𝜒   ∧  𝜃  ) )