| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralprd.1 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | ralprd.2 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐵 )  →  ( 𝜓  ↔  𝜃 ) ) | 
						
							| 3 |  | raltpd.3 | ⊢ ( ( 𝜑  ∧  𝑥  =  𝐶 )  →  ( 𝜓  ↔  𝜏 ) ) | 
						
							| 4 |  | ralprd.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 5 |  | ralprd.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 6 |  | raltpd.c | ⊢ ( 𝜑  →  𝐶  ∈  𝑋 ) | 
						
							| 7 |  | an3andi | ⊢ ( ( 𝜑  ∧  ( 𝜒  ∧  𝜃  ∧  𝜏 ) )  ↔  ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜑  ∧  𝜃 )  ∧  ( 𝜑  ∧  𝜏 ) ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( ( 𝜑  ∧  ( 𝜒  ∧  𝜃  ∧  𝜏 ) )  ↔  ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜑  ∧  𝜃 )  ∧  ( 𝜑  ∧  𝜏 ) ) ) ) | 
						
							| 9 | 1 | expcom | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) ) | 
						
							| 10 | 9 | pm5.32d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 11 | 2 | expcom | ⊢ ( 𝑥  =  𝐵  →  ( 𝜑  →  ( 𝜓  ↔  𝜃 ) ) ) | 
						
							| 12 | 11 | pm5.32d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  𝜃 ) ) ) | 
						
							| 13 | 3 | expcom | ⊢ ( 𝑥  =  𝐶  →  ( 𝜑  →  ( 𝜓  ↔  𝜏 ) ) ) | 
						
							| 14 | 13 | pm5.32d | ⊢ ( 𝑥  =  𝐶  →  ( ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  𝜏 ) ) ) | 
						
							| 15 | 10 12 14 | raltpg | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜑  ∧  𝜃 )  ∧  ( 𝜑  ∧  𝜏 ) ) ) ) | 
						
							| 16 | 4 5 6 15 | syl3anc | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ( 𝜑  ∧  𝜓 )  ↔  ( ( 𝜑  ∧  𝜒 )  ∧  ( 𝜑  ∧  𝜃 )  ∧  ( 𝜑  ∧  𝜏 ) ) ) ) | 
						
							| 17 | 4 | tpnzd | ⊢ ( 𝜑  →  { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅ ) | 
						
							| 18 |  | r19.28zv | ⊢ ( { 𝐴 ,  𝐵 ,  𝐶 }  ≠  ∅  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝜓 ) ) ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } ( 𝜑  ∧  𝜓 )  ↔  ( 𝜑  ∧  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝜓 ) ) ) | 
						
							| 20 | 8 16 19 | 3bitr2d | ⊢ ( 𝜑  →  ( ( 𝜑  ∧  ( 𝜒  ∧  𝜃  ∧  𝜏 ) )  ↔  ( 𝜑  ∧  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝜓 ) ) ) | 
						
							| 21 | 20 | bianabs | ⊢ ( 𝜑  →  ( ( 𝜑  ∧  ( 𝜒  ∧  𝜃  ∧  𝜏 ) )  ↔  ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝜓 ) ) | 
						
							| 22 | 21 | bicomd | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝜓  ↔  ( 𝜑  ∧  ( 𝜒  ∧  𝜃  ∧  𝜏 ) ) ) ) | 
						
							| 23 | 22 | bianabs | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  { 𝐴 ,  𝐵 ,  𝐶 } 𝜓  ↔  ( 𝜒  ∧  𝜃  ∧  𝜏 ) ) ) |