Step |
Hyp |
Ref |
Expression |
1 |
|
ralprg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
ralprg.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
raltpg.3 |
⊢ ( 𝑥 = 𝐶 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
1 2
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) ) |
5 |
3
|
ralsng |
⊢ ( 𝐶 ∈ 𝑋 → ( ∀ 𝑥 ∈ { 𝐶 } 𝜑 ↔ 𝜃 ) ) |
6 |
4 5
|
bi2anan9 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝐶 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
7 |
6
|
3impa |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) ) |
8 |
|
df-tp |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) |
9 |
8
|
raleqi |
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ∀ 𝑥 ∈ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) 𝜑 ) |
10 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ) |
11 |
9 10
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ∀ 𝑥 ∈ { 𝐶 } 𝜑 ) ) |
12 |
|
df-3an |
⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
13 |
7 11 12
|
3bitr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 , 𝐶 } 𝜑 ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) ) |