Metamath Proof Explorer


Theorem ralun

Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion ralun ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜑 ) → ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 )

Proof

Step Hyp Ref Expression
1 ralunb ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜑 ) )
2 1 biimpri ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜑 ) → ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 )