Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Assertion | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) | |
2 | 1 | biimpri | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ) |