Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralun | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralunb | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) | |
| 2 | 1 | biimpri | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) → ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ) |