Metamath Proof Explorer


Theorem ralunb

Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion ralunb ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 elunant ( ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) ↔ ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑥𝐵𝜑 ) ) )
2 1 albii ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑥𝐵𝜑 ) ) )
3 19.26 ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑥𝐵𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝜑 ) ) )
4 2 3 bitri ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝜑 ) ) )
5 df-ral ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) → 𝜑 ) )
6 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
7 df-ral ( ∀ 𝑥𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐵𝜑 ) )
8 6 7 anbi12i ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝜑 ) ) )
9 4 5 8 3bitr4i ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜑 ) )