| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elunant |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 2 |
1
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 3 |
|
19.26 |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 4 |
2 3
|
bitri |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 5 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → 𝜑 ) ) |
| 6 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 7 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) |
| 8 |
6 7
|
anbi12i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜑 ) ) ) |
| 9 |
4 5 8
|
3bitr4i |
⊢ ( ∀ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝜑 ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜑 ) ) |