Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raluz | ⊢ ( 𝑀 ∈ ℤ → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eluz1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) ) | |
| 2 | 1 | imbi1d | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜑 ) ↔ ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ) ) | 
| 3 | impexp | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) | |
| 4 | 2 3 | bitrdi | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) | 
| 5 | 4 | ralbidv2 | ⊢ ( 𝑀 ∈ ℤ → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |