Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) |
2 |
|
3anass |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) ) |
3 |
1 2
|
bitri |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) ) |
4 |
3
|
imbi1i |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜑 ) ↔ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ) |
5 |
|
impexp |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ) ) |
6 |
|
impexp |
⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |
7 |
6
|
imbi2i |
⊢ ( ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) → 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
8 |
5 7
|
bitri |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
9 |
|
bi2.04 |
⊢ ( ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
10 |
8 9
|
bitri |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀 ≤ 𝑛 ) ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
11 |
4 10
|
bitri |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) ) |
12 |
11
|
ralbii2 |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ∀ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |
13 |
|
r19.21v |
⊢ ( ∀ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ → ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀 ≤ 𝑛 → 𝜑 ) ) ) |