Metamath Proof Explorer


Theorem raluz2

Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion raluz2 ( ∀ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 eluz2 ( 𝑛 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) )
2 3anass ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) )
3 1 2 bitri ( 𝑛 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) )
4 3 imbi1i ( ( 𝑛 ∈ ( ℤ𝑀 ) → 𝜑 ) ↔ ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) → 𝜑 ) )
5 impexp ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) → 𝜑 ) ) )
6 impexp ( ( ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) )
7 6 imbi2i ( ( 𝑀 ∈ ℤ → ( ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) → 𝜑 ) ) ↔ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ) )
8 5 7 bitri ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ) )
9 bi2.04 ( ( 𝑀 ∈ ℤ → ( 𝑛 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ) )
10 8 9 bitri ( ( ( 𝑀 ∈ ℤ ∧ ( 𝑛 ∈ ℤ ∧ 𝑀𝑛 ) ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ) )
11 4 10 bitri ( ( 𝑛 ∈ ( ℤ𝑀 ) → 𝜑 ) ↔ ( 𝑛 ∈ ℤ → ( 𝑀 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ) )
12 11 ralbii2 ( ∀ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ∀ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) )
13 r19.21v ( ∀ 𝑛 ∈ ℤ ( 𝑀 ∈ ℤ → ( 𝑀𝑛𝜑 ) ) ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )
14 12 13 bitri ( ∀ 𝑛 ∈ ( ℤ𝑀 ) 𝜑 ↔ ( 𝑀 ∈ ℤ → ∀ 𝑛 ∈ ℤ ( 𝑀𝑛𝜑 ) ) )