| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) ) | 
						
							| 2 |  | 3anass | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 )  ↔  ( 𝑀  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) ) ) | 
						
							| 3 | 1 2 | bitri | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) ) ) | 
						
							| 4 | 3 | imbi1i | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝜑 )  ↔  ( ( 𝑀  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) )  →  𝜑 ) ) | 
						
							| 5 |  | impexp | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) )  →  𝜑 )  ↔  ( 𝑀  ∈  ℤ  →  ( ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 )  →  𝜑 ) ) ) | 
						
							| 6 |  | impexp | ⊢ ( ( ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 )  →  𝜑 )  ↔  ( 𝑛  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) | 
						
							| 7 | 6 | imbi2i | ⊢ ( ( 𝑀  ∈  ℤ  →  ( ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 )  →  𝜑 ) )  ↔  ( 𝑀  ∈  ℤ  →  ( 𝑛  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) ) | 
						
							| 8 | 5 7 | bitri | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) )  →  𝜑 )  ↔  ( 𝑀  ∈  ℤ  →  ( 𝑛  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) ) | 
						
							| 9 |  | bi2.04 | ⊢ ( ( 𝑀  ∈  ℤ  →  ( 𝑛  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) )  ↔  ( 𝑛  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  ( 𝑛  ∈  ℤ  ∧  𝑀  ≤  𝑛 ) )  →  𝜑 )  ↔  ( 𝑛  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) ) | 
						
							| 11 | 4 10 | bitri | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝜑 )  ↔  ( 𝑛  ∈  ℤ  →  ( 𝑀  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) ) | 
						
							| 12 | 11 | ralbii2 | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) 𝜑  ↔  ∀ 𝑛  ∈  ℤ ( 𝑀  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) | 
						
							| 13 |  | r19.21v | ⊢ ( ∀ 𝑛  ∈  ℤ ( 𝑀  ∈  ℤ  →  ( 𝑀  ≤  𝑛  →  𝜑 ) )  ↔  ( 𝑀  ∈  ℤ  →  ∀ 𝑛  ∈  ℤ ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) | 
						
							| 14 | 12 13 | bitri | ⊢ ( ∀ 𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) 𝜑  ↔  ( 𝑀  ∈  ℤ  →  ∀ 𝑛  ∈  ℤ ( 𝑀  ≤  𝑛  →  𝜑 ) ) ) |