Metamath Proof Explorer


Theorem ralv

Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion ralv ( ∀ 𝑥 ∈ V 𝜑 ↔ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥 ∈ V 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ V → 𝜑 ) )
2 vex 𝑥 ∈ V
3 2 a1bi ( 𝜑 ↔ ( 𝑥 ∈ V → 𝜑 ) )
4 3 albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ V → 𝜑 ) )
5 1 4 bitr4i ( ∀ 𝑥 ∈ V 𝜑 ↔ ∀ 𝑥 𝜑 )