Metamath Proof Explorer


Theorem ralxfr

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses ralxfr.1 ( 𝑦𝐶𝐴𝐵 )
ralxfr.2 ( 𝑥𝐵 → ∃ 𝑦𝐶 𝑥 = 𝐴 )
ralxfr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ralxfr ( ∀ 𝑥𝐵 𝜑 ↔ ∀ 𝑦𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxfr.1 ( 𝑦𝐶𝐴𝐵 )
2 ralxfr.2 ( 𝑥𝐵 → ∃ 𝑦𝐶 𝑥 = 𝐴 )
3 ralxfr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 1 adantl ( ( ⊤ ∧ 𝑦𝐶 ) → 𝐴𝐵 )
5 2 adantl ( ( ⊤ ∧ 𝑥𝐵 ) → ∃ 𝑦𝐶 𝑥 = 𝐴 )
6 3 adantl ( ( ⊤ ∧ 𝑥 = 𝐴 ) → ( 𝜑𝜓 ) )
7 4 5 6 ralxfrd ( ⊤ → ( ∀ 𝑥𝐵 𝜑 ↔ ∀ 𝑦𝐶 𝜓 ) )
8 7 mptru ( ∀ 𝑥𝐵 𝜑 ↔ ∀ 𝑦𝐶 𝜓 )