Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralxfr.1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) | |
ralxfr.2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
ralxfr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | ralxfr | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐶 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr.1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) | |
2 | ralxfr.2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
3 | ralxfr.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
4 | 1 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
5 | 2 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
6 | 3 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 = 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |
7 | 4 5 6 | ralxfrd | ⊢ ( ⊤ → ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐶 𝜓 ) ) |
8 | 7 | mptru | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐶 𝜓 ) |