| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralxfr2d.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) |
| 2 |
|
ralxfr2d.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) ) |
| 3 |
|
ralxfr2d.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
| 5 |
1 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 𝑥 = 𝐴 ) |
| 6 |
2
|
biimprd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 7 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 8 |
6 7
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 9 |
8
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 11 |
9 10
|
mpbidi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 12 |
11
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
| 13 |
5 12
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| 14 |
2
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 15 |
13 14 3
|
ralxfrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |