Step |
Hyp |
Ref |
Expression |
1 |
|
ralxfr2d.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝑉 ) |
2 |
|
ralxfr2d.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) ) |
3 |
|
ralxfr2d.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) |
5 |
1 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ∃ 𝑥 𝑥 = 𝐴 ) |
6 |
2
|
biimprd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
7 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
8 |
6 7
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
9 |
8
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → 𝑥 ∈ 𝐵 ) ) |
10 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
11 |
9 10
|
mpbidi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
12 |
11
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵 ) ) |
13 |
5 12
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
14 |
2
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
15 |
13 14 3
|
ralxfrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |