| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralxfr.1 |
⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) |
| 2 |
|
ralxfr.2 |
⊢ ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 3 |
|
ralxfr.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
3
|
rspcv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| 5 |
1 4
|
syl |
⊢ ( 𝑦 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐵 𝜑 → 𝜓 ) ) |
| 6 |
5
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐶 → 𝜓 ) ) |
| 7 |
6
|
ralrimiv |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐶 𝜓 ) |
| 8 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐶 𝜓 |
| 9 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 10 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( 𝑦 ∈ 𝐶 → 𝜓 ) ) |
| 11 |
3
|
biimprcd |
⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 |
10 11
|
syl6 |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( 𝑦 ∈ 𝐶 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 13 |
8 9 12
|
rexlimd |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝜑 ) ) |
| 14 |
2 13
|
syl5 |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ( 𝑥 ∈ 𝐵 → 𝜑 ) ) |
| 15 |
14
|
ralrimiv |
⊢ ( ∀ 𝑦 ∈ 𝐶 𝜓 → ∀ 𝑥 ∈ 𝐵 𝜑 ) |
| 16 |
7 15
|
impbii |
⊢ ( ∀ 𝑥 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ∈ 𝐶 𝜓 ) |