Metamath Proof Explorer


Theorem ralxfrALT

Description: Alternate proof of ralxfr which does not use ralxfrd . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ralxfr.1 ( 𝑦𝐶𝐴𝐵 )
ralxfr.2 ( 𝑥𝐵 → ∃ 𝑦𝐶 𝑥 = 𝐴 )
ralxfr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion ralxfrALT ( ∀ 𝑥𝐵 𝜑 ↔ ∀ 𝑦𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxfr.1 ( 𝑦𝐶𝐴𝐵 )
2 ralxfr.2 ( 𝑥𝐵 → ∃ 𝑦𝐶 𝑥 = 𝐴 )
3 ralxfr.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 3 rspcv ( 𝐴𝐵 → ( ∀ 𝑥𝐵 𝜑𝜓 ) )
5 1 4 syl ( 𝑦𝐶 → ( ∀ 𝑥𝐵 𝜑𝜓 ) )
6 5 com12 ( ∀ 𝑥𝐵 𝜑 → ( 𝑦𝐶𝜓 ) )
7 6 ralrimiv ( ∀ 𝑥𝐵 𝜑 → ∀ 𝑦𝐶 𝜓 )
8 nfra1 𝑦𝑦𝐶 𝜓
9 nfv 𝑦 𝜑
10 rsp ( ∀ 𝑦𝐶 𝜓 → ( 𝑦𝐶𝜓 ) )
11 3 biimprcd ( 𝜓 → ( 𝑥 = 𝐴𝜑 ) )
12 10 11 syl6 ( ∀ 𝑦𝐶 𝜓 → ( 𝑦𝐶 → ( 𝑥 = 𝐴𝜑 ) ) )
13 8 9 12 rexlimd ( ∀ 𝑦𝐶 𝜓 → ( ∃ 𝑦𝐶 𝑥 = 𝐴𝜑 ) )
14 2 13 syl5 ( ∀ 𝑦𝐶 𝜓 → ( 𝑥𝐵𝜑 ) )
15 14 ralrimiv ( ∀ 𝑦𝐶 𝜓 → ∀ 𝑥𝐵 𝜑 )
16 7 15 impbii ( ∀ 𝑥𝐵 𝜑 ↔ ∀ 𝑦𝐶 𝜓 )