| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralxfrd.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| 2 |
|
ralxfrd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 3 |
|
ralxfrd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 4 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 5 |
1 4
|
rspcdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐵 𝜓 → 𝜒 ) ) |
| 6 |
5
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 → ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |
| 7 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐶 𝜒 ∧ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) → ∃ 𝑦 ∈ 𝐶 ( 𝜒 ∧ 𝑥 = 𝐴 ) ) |
| 8 |
3
|
exbiri |
⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜒 → 𝜓 ) ) ) |
| 9 |
8
|
impcomd |
⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 10 |
9
|
rexlimdvw |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 ( 𝜒 ∧ 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 11 |
7 10
|
syl5 |
⊢ ( 𝜑 → ( ( ∀ 𝑦 ∈ 𝐶 𝜒 ∧ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝐶 𝜒 ∧ ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) → 𝜓 ) ) |
| 13 |
2 12
|
mpan2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐶 𝜒 → 𝜓 ) ) |
| 14 |
13
|
ralrimdva |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐶 𝜒 → ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| 15 |
6 14
|
impbid |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ∈ 𝐶 𝜒 ) ) |