| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ralxfrd2.1 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  𝐴  ∈  𝐵 ) | 
						
							| 2 |  | ralxfrd2.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐶 𝑥  =  𝐴 ) | 
						
							| 3 |  | ralxfrd2.3 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 4 | 3 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 5 | 1 4 | rspcdv | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐶 )  →  ( ∀ 𝑥  ∈  𝐵 𝜓  →  𝜒 ) ) | 
						
							| 6 | 5 | ralrimdva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 𝜓  →  ∀ 𝑦  ∈  𝐶 𝜒 ) ) | 
						
							| 7 |  | r19.29 | ⊢ ( ( ∀ 𝑦  ∈  𝐶 𝜒  ∧  ∃ 𝑦  ∈  𝐶 𝑥  =  𝐴 )  →  ∃ 𝑦  ∈  𝐶 ( 𝜒  ∧  𝑥  =  𝐴 ) ) | 
						
							| 8 | 3 | ad4ant134 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐶 )  ∧  𝑥  =  𝐴 )  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 9 | 8 | exbiri | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥  =  𝐴  →  ( 𝜒  →  𝜓 ) ) ) | 
						
							| 10 | 9 | impcomd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐶 )  →  ( ( 𝜒  ∧  𝑥  =  𝐴 )  →  𝜓 ) ) | 
						
							| 11 | 10 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ∃ 𝑦  ∈  𝐶 ( 𝜒  ∧  𝑥  =  𝐴 )  →  𝜓 ) ) | 
						
							| 12 | 7 11 | syl5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ( ∀ 𝑦  ∈  𝐶 𝜒  ∧  ∃ 𝑦  ∈  𝐶 𝑥  =  𝐴 )  →  𝜓 ) ) | 
						
							| 13 | 2 12 | mpan2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( ∀ 𝑦  ∈  𝐶 𝜒  →  𝜓 ) ) | 
						
							| 14 | 13 | ralrimdva | ⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝐶 𝜒  →  ∀ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 15 | 6 14 | impbid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝐵 𝜓  ↔  ∀ 𝑦  ∈  𝐶 𝜒 ) ) |