Metamath Proof Explorer


Theorem ralxp3

Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypothesis ralxp3.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → ( 𝜑𝜓 ) )
Assertion ralxp3 ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxp3.1 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → ( 𝜑𝜓 ) )
2 nfv 𝑦 𝜑
3 nfv 𝑧 𝜑
4 nfv 𝑤 𝜑
5 nfv 𝑥 𝜓
6 2 3 4 5 1 ralxp3f ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )