Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralxp3.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 , 𝑤 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | ralxp3 | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝜓 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralxp3.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 , 𝑤 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 4 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
| 5 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 6 | 2 3 4 5 1 | ralxp3f | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝜓 ) |