Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ralxp3.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 , 𝑤 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | ralxp3 | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxp3.1 | ⊢ ( 𝑥 = 〈 𝑦 , 𝑧 , 𝑤 〉 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
3 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
4 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
5 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
6 | 2 3 4 5 1 | ralxp3f | ⊢ ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐶 𝜓 ) |