Metamath Proof Explorer


Theorem ralxp3f

Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses ralxp3f.1 𝑦 𝜑
ralxp3f.2 𝑧 𝜑
ralxp3f.3 𝑤 𝜑
ralxp3f.4 𝑥 𝜓
ralxp3f.5 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → ( 𝜑𝜓 ) )
Assertion ralxp3f ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 ralxp3f.1 𝑦 𝜑
2 ralxp3f.2 𝑧 𝜑
3 ralxp3f.3 𝑤 𝜑
4 ralxp3f.4 𝑥 𝜓
5 ralxp3f.5 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → ( 𝜑𝜓 ) )
6 df-ral ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) )
7 el2xptp ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) ↔ ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ )
8 7 imbi1i ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) ↔ ( ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
9 3 r19.23 ( ∀ 𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
10 9 ralbii ( ∀ 𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑧𝐵 ( ∃ 𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
11 2 r19.23 ( ∀ 𝑧𝐵 ( ∃ 𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
12 10 11 bitri ( ∀ 𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
13 12 ralbii ( ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴 ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
14 1 r19.23 ( ∀ 𝑦𝐴 ( ∃ 𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ( ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
15 13 14 bitr2i ( ( ∃ 𝑦𝐴𝑧𝐵𝑤𝐶 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
16 8 15 bitri ( ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
17 16 albii ( ∀ 𝑥 ( 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) → 𝜑 ) ↔ ∀ 𝑥𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
18 ralcom4 ( ∀ 𝑦𝐴𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑥𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
19 ralcom4 ( ∀ 𝑧𝐵𝑥𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
20 ralcom4 ( ∀ 𝑤𝐶𝑥 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑥𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) )
21 otex 𝑦 , 𝑧 , 𝑤 ⟩ ∈ V
22 4 21 5 ceqsal ( ∀ 𝑥 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ 𝜓 )
23 22 ralbii ( ∀ 𝑤𝐶𝑥 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑤𝐶 𝜓 )
24 20 23 bitr3i ( ∀ 𝑥𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑤𝐶 𝜓 )
25 24 ralbii ( ∀ 𝑧𝐵𝑥𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑧𝐵𝑤𝐶 𝜓 )
26 19 25 bitr3i ( ∀ 𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑧𝐵𝑤𝐶 𝜓 )
27 26 ralbii ( ∀ 𝑦𝐴𝑥𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )
28 18 27 bitr3i ( ∀ 𝑥𝑦𝐴𝑧𝐵𝑤𝐶 ( 𝑥 = ⟨ 𝑦 , 𝑧 , 𝑤 ⟩ → 𝜑 ) ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )
29 6 17 28 3bitri ( ∀ 𝑥 ∈ ( ( 𝐴 × 𝐵 ) × 𝐶 ) 𝜑 ↔ ∀ 𝑦𝐴𝑧𝐵𝑤𝐶 𝜓 )