Step |
Hyp |
Ref |
Expression |
1 |
|
ralxpmap.j |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vex |
⊢ 𝑔 ∈ V |
3 |
|
snex |
⊢ { 〈 𝐽 , 𝑦 〉 } ∈ V |
4 |
2 3
|
unex |
⊢ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ V |
5 |
|
simpr |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) |
6 |
|
elmapex |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) ) |
8 |
|
elmapg |
⊢ ( ( 𝑆 ∈ V ∧ 𝑇 ∈ V ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ 𝑓 : 𝑇 ⟶ 𝑆 ) ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ 𝑓 : 𝑇 ⟶ 𝑆 ) ) |
10 |
5 9
|
mpbid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 : 𝑇 ⟶ 𝑆 ) |
11 |
|
simpl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝐽 ∈ 𝑇 ) |
12 |
10 11
|
ffvelrnd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ‘ 𝐽 ) ∈ 𝑆 ) |
13 |
|
difss |
⊢ ( 𝑇 ∖ { 𝐽 } ) ⊆ 𝑇 |
14 |
|
fssres |
⊢ ( ( 𝑓 : 𝑇 ⟶ 𝑆 ∧ ( 𝑇 ∖ { 𝐽 } ) ⊆ 𝑇 ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
15 |
10 13 14
|
sylancl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
16 |
6
|
simpld |
⊢ ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → 𝑆 ∈ V ) |
17 |
16
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑆 ∈ V ) |
18 |
7
|
simprd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑇 ∈ V ) |
19 |
18
|
difexd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑇 ∖ { 𝐽 } ) ∈ V ) |
20 |
17 19
|
elmapd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ↔ ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) ) |
21 |
15 20
|
mpbird |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) |
22 |
10
|
ffnd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 Fn 𝑇 ) |
23 |
|
fnsnsplit |
⊢ ( ( 𝑓 Fn 𝑇 ∧ 𝐽 ∈ 𝑇 ) → 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
24 |
22 11 23
|
syl2anc |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
25 |
|
opeq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → 〈 𝐽 , 𝑦 〉 = 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 ) |
26 |
25
|
sneqd |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → { 〈 𝐽 , 𝑦 〉 } = { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) |
27 |
26
|
uneq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
28 |
27
|
eqeq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝐽 ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ↔ 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) ) |
29 |
|
uneq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) |
30 |
29
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ↔ 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) ) |
31 |
28 30
|
rspc2ev |
⊢ ( ( ( 𝑓 ‘ 𝐽 ) ∈ 𝑆 ∧ ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ∧ 𝑓 = ( ( 𝑓 ↾ ( 𝑇 ∖ { 𝐽 } ) ) ∪ { 〈 𝐽 , ( 𝑓 ‘ 𝐽 ) 〉 } ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) |
32 |
12 21 24 31
|
syl3anc |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) |
33 |
32
|
ex |
⊢ ( 𝐽 ∈ 𝑇 → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) → ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) ) |
34 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) → 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
35 |
34
|
ad2antll |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ) |
36 |
|
f1osng |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } –1-1-onto→ { 𝑦 } ) |
37 |
|
f1of |
⊢ ( { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } –1-1-onto→ { 𝑦 } → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
38 |
36 37
|
syl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑦 ∈ V ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
39 |
38
|
elvd |
⊢ ( 𝐽 ∈ 𝑇 → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
40 |
39
|
adantr |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) |
41 |
|
disjdifr |
⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ |
42 |
41
|
a1i |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ ) |
43 |
|
fun |
⊢ ( ( ( 𝑔 : ( 𝑇 ∖ { 𝐽 } ) ⟶ 𝑆 ∧ { 〈 𝐽 , 𝑦 〉 } : { 𝐽 } ⟶ { 𝑦 } ) ∧ ( ( 𝑇 ∖ { 𝐽 } ) ∩ { 𝐽 } ) = ∅ ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
44 |
35 40 42 43
|
syl21anc |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
45 |
|
uncom |
⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = ( { 𝐽 } ∪ ( 𝑇 ∖ { 𝐽 } ) ) |
46 |
|
simpl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝐽 ∈ 𝑇 ) |
47 |
46
|
snssd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 𝐽 } ⊆ 𝑇 ) |
48 |
|
undif |
⊢ ( { 𝐽 } ⊆ 𝑇 ↔ ( { 𝐽 } ∪ ( 𝑇 ∖ { 𝐽 } ) ) = 𝑇 ) |
49 |
47 48
|
sylib |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( { 𝐽 } ∪ ( 𝑇 ∖ { 𝐽 } ) ) = 𝑇 ) |
50 |
45 49
|
eqtrid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = 𝑇 ) |
51 |
50
|
feq2d |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ⟶ ( 𝑆 ∪ { 𝑦 } ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ ( 𝑆 ∪ { 𝑦 } ) ) ) |
52 |
44 51
|
mpbid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ ( 𝑆 ∪ { 𝑦 } ) ) |
53 |
|
ssidd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑆 ⊆ 𝑆 ) |
54 |
|
snssi |
⊢ ( 𝑦 ∈ 𝑆 → { 𝑦 } ⊆ 𝑆 ) |
55 |
54
|
ad2antrl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → { 𝑦 } ⊆ 𝑆 ) |
56 |
53 55
|
unssd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑆 ∪ { 𝑦 } ) ⊆ 𝑆 ) |
57 |
52 56
|
fssd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ 𝑆 ) |
58 |
|
elmapex |
⊢ ( 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) → ( 𝑆 ∈ V ∧ ( 𝑇 ∖ { 𝐽 } ) ∈ V ) ) |
59 |
58
|
ad2antll |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑆 ∈ V ∧ ( 𝑇 ∖ { 𝐽 } ) ∈ V ) ) |
60 |
59
|
simpld |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑆 ∈ V ) |
61 |
|
ssun1 |
⊢ 𝑇 ⊆ ( 𝑇 ∪ { 𝐽 } ) |
62 |
|
undif1 |
⊢ ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) = ( 𝑇 ∪ { 𝐽 } ) |
63 |
59
|
simprd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑇 ∖ { 𝐽 } ) ∈ V ) |
64 |
|
snex |
⊢ { 𝐽 } ∈ V |
65 |
|
unexg |
⊢ ( ( ( 𝑇 ∖ { 𝐽 } ) ∈ V ∧ { 𝐽 } ∈ V ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ∈ V ) |
66 |
63 64 65
|
sylancl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑇 ∖ { 𝐽 } ) ∪ { 𝐽 } ) ∈ V ) |
67 |
62 66
|
eqeltrrid |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑇 ∪ { 𝐽 } ) ∈ V ) |
68 |
|
ssexg |
⊢ ( ( 𝑇 ⊆ ( 𝑇 ∪ { 𝐽 } ) ∧ ( 𝑇 ∪ { 𝐽 } ) ∈ V ) → 𝑇 ∈ V ) |
69 |
61 67 68
|
sylancr |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → 𝑇 ∈ V ) |
70 |
60 69
|
elmapd |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) : 𝑇 ⟶ 𝑆 ) ) |
71 |
57 70
|
mpbird |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ) |
72 |
|
eleq1 |
⊢ ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
73 |
71 72
|
syl5ibrcom |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) ) ) → ( 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
74 |
73
|
rexlimdvva |
⊢ ( 𝐽 ∈ 𝑇 → ( ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) → 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ) ) |
75 |
33 74
|
impbid |
⊢ ( 𝐽 ∈ 𝑇 → ( 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) ↔ ∃ 𝑦 ∈ 𝑆 ∃ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) ) |
76 |
1
|
adantl |
⊢ ( ( 𝐽 ∈ 𝑇 ∧ 𝑓 = ( 𝑔 ∪ { 〈 𝐽 , 𝑦 〉 } ) ) → ( 𝜑 ↔ 𝜓 ) ) |
77 |
4 75 76
|
ralxpxfr2d |
⊢ ( 𝐽 ∈ 𝑇 → ( ∀ 𝑓 ∈ ( 𝑆 ↑m 𝑇 ) 𝜑 ↔ ∀ 𝑦 ∈ 𝑆 ∀ 𝑔 ∈ ( 𝑆 ↑m ( 𝑇 ∖ { 𝐽 } ) ) 𝜓 ) ) |