| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
| 2 |
|
id |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℕ0 ) |
| 3 |
|
0ex |
⊢ ∅ ∈ V |
| 4 |
3
|
a1i |
⊢ ( 𝑀 ∈ ℕ0 → ∅ ∈ V ) |
| 5 |
|
f0 |
⊢ ∅ : ∅ ⟶ ℕ0 |
| 6 |
5
|
a1i |
⊢ ( 𝑀 ∈ ℕ0 → ∅ : ∅ ⟶ ℕ0 ) |
| 7 |
|
f00 |
⊢ ( 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ ∅ ↔ ( 𝑓 = ∅ ∧ ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) ) |
| 8 |
|
vex |
⊢ 𝑠 ∈ V |
| 9 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → 𝑀 ∈ ℕ0 ) |
| 10 |
1
|
hashbcval |
⊢ ( ( 𝑠 ∈ V ∧ 𝑀 ∈ ℕ0 ) → ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = { 𝑥 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
| 11 |
8 9 10
|
sylancr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = { 𝑥 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
| 12 |
|
hashfz1 |
⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 13 |
12
|
breq1d |
⊢ ( 𝑀 ∈ ℕ0 → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) ≤ ( ♯ ‘ 𝑠 ) ↔ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ) |
| 14 |
13
|
biimpar |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( ♯ ‘ ( 1 ... 𝑀 ) ) ≤ ( ♯ ‘ 𝑠 ) ) |
| 15 |
|
fzfid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( 1 ... 𝑀 ) ∈ Fin ) |
| 16 |
|
hashdom |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑠 ∈ V ) → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) ≤ ( ♯ ‘ 𝑠 ) ↔ ( 1 ... 𝑀 ) ≼ 𝑠 ) ) |
| 17 |
15 8 16
|
sylancl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( ( ♯ ‘ ( 1 ... 𝑀 ) ) ≤ ( ♯ ‘ 𝑠 ) ↔ ( 1 ... 𝑀 ) ≼ 𝑠 ) ) |
| 18 |
14 17
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( 1 ... 𝑀 ) ≼ 𝑠 ) |
| 19 |
8
|
domen |
⊢ ( ( 1 ... 𝑀 ) ≼ 𝑠 ↔ ∃ 𝑥 ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) |
| 20 |
18 19
|
sylib |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ∃ 𝑥 ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) |
| 21 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ∧ ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) → 𝑥 ⊆ 𝑠 ) |
| 22 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑠 ↔ 𝑥 ⊆ 𝑠 ) |
| 23 |
21 22
|
sylibr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ∧ ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) → 𝑥 ∈ 𝒫 𝑠 ) |
| 24 |
|
hasheni |
⊢ ( ( 1 ... 𝑀 ) ≈ 𝑥 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = ( ♯ ‘ 𝑥 ) ) |
| 25 |
24
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ∧ ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) → ( ♯ ‘ ( 1 ... 𝑀 ) ) = ( ♯ ‘ 𝑥 ) ) |
| 26 |
12
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ∧ ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 27 |
25 26
|
eqtr3d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ∧ ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) → ( ♯ ‘ 𝑥 ) = 𝑀 ) |
| 28 |
23 27
|
jca |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) ∧ ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) ) → ( 𝑥 ∈ 𝒫 𝑠 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) |
| 29 |
28
|
ex |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) → ( 𝑥 ∈ 𝒫 𝑠 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) ) |
| 30 |
29
|
eximdv |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( ∃ 𝑥 ( ( 1 ... 𝑀 ) ≈ 𝑥 ∧ 𝑥 ⊆ 𝑠 ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝑠 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) ) |
| 31 |
20 30
|
mpd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝑠 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) |
| 32 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝒫 𝑠 ( ♯ ‘ 𝑥 ) = 𝑀 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝒫 𝑠 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) |
| 33 |
31 32
|
sylibr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ∃ 𝑥 ∈ 𝒫 𝑠 ( ♯ ‘ 𝑥 ) = 𝑀 ) |
| 34 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝒫 𝑠 ( ♯ ‘ 𝑥 ) = 𝑀 ) |
| 35 |
33 34
|
sylibr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → { 𝑥 ∈ 𝒫 𝑠 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ≠ ∅ ) |
| 36 |
11 35
|
eqnetrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ≠ ∅ ) |
| 37 |
36
|
neneqd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ¬ ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) |
| 38 |
37
|
pm2.21d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ → ∃ 𝑐 ∈ ∅ ∃ 𝑥 ∈ 𝒫 𝑠 ( ( ∅ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
| 39 |
38
|
adantld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( ( 𝑓 = ∅ ∧ ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) → ∃ 𝑐 ∈ ∅ ∃ 𝑥 ∈ 𝒫 𝑠 ( ( ∅ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
| 40 |
7 39
|
biimtrid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑀 ≤ ( ♯ ‘ 𝑠 ) ) → ( 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ ∅ → ∃ 𝑐 ∈ ∅ ∃ 𝑥 ∈ 𝒫 𝑠 ( ( ∅ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
| 41 |
40
|
impr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑀 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ ∅ ) ) → ∃ 𝑐 ∈ ∅ ∃ 𝑥 ∈ 𝒫 𝑠 ( ( ∅ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
| 42 |
1 2 4 6 2 41
|
ramub |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 Ramsey ∅ ) ≤ 𝑀 ) |
| 43 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 44 |
3
|
a1i |
⊢ ( 𝑀 ∈ ℕ → ∅ ∈ V ) |
| 45 |
5
|
a1i |
⊢ ( 𝑀 ∈ ℕ → ∅ : ∅ ⟶ ℕ0 ) |
| 46 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 47 |
|
f0 |
⊢ ∅ : ∅ ⟶ ∅ |
| 48 |
|
fzfid |
⊢ ( 𝑀 ∈ ℕ → ( 1 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 49 |
1
|
hashbc2 |
⊢ ( ( ( 1 ... ( 𝑀 − 1 ) ) ∈ Fin ∧ 𝑀 ∈ ℕ0 ) → ( ♯ ‘ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) = ( ( ♯ ‘ ( 1 ... ( 𝑀 − 1 ) ) ) C 𝑀 ) ) |
| 50 |
48 43 49
|
syl2anc |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) = ( ( ♯ ‘ ( 1 ... ( 𝑀 − 1 ) ) ) C 𝑀 ) ) |
| 51 |
|
hashfz1 |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( 𝑀 − 1 ) ) ) = ( 𝑀 − 1 ) ) |
| 52 |
46 51
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 1 ... ( 𝑀 − 1 ) ) ) = ( 𝑀 − 1 ) ) |
| 53 |
52
|
oveq1d |
⊢ ( 𝑀 ∈ ℕ → ( ( ♯ ‘ ( 1 ... ( 𝑀 − 1 ) ) ) C 𝑀 ) = ( ( 𝑀 − 1 ) C 𝑀 ) ) |
| 54 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 55 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 56 |
55
|
ltm1d |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) < 𝑀 ) |
| 57 |
56
|
olcd |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 < 0 ∨ ( 𝑀 − 1 ) < 𝑀 ) ) |
| 58 |
|
bcval4 |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ ( 𝑀 < 0 ∨ ( 𝑀 − 1 ) < 𝑀 ) ) → ( ( 𝑀 − 1 ) C 𝑀 ) = 0 ) |
| 59 |
46 54 57 58
|
syl3anc |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) C 𝑀 ) = 0 ) |
| 60 |
50 53 59
|
3eqtrd |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) = 0 ) |
| 61 |
|
ovex |
⊢ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ∈ V |
| 62 |
|
hasheq0 |
⊢ ( ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ∈ V → ( ( ♯ ‘ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) = 0 ↔ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) ) |
| 63 |
61 62
|
ax-mp |
⊢ ( ( ♯ ‘ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) = 0 ↔ ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) |
| 64 |
60 63
|
sylib |
⊢ ( 𝑀 ∈ ℕ → ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) |
| 65 |
64
|
feq2d |
⊢ ( 𝑀 ∈ ℕ → ( ∅ : ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ ∅ ↔ ∅ : ∅ ⟶ ∅ ) ) |
| 66 |
47 65
|
mpbiri |
⊢ ( 𝑀 ∈ ℕ → ∅ : ( ( 1 ... ( 𝑀 − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ ∅ ) |
| 67 |
|
noel |
⊢ ¬ 𝑐 ∈ ∅ |
| 68 |
67
|
pm2.21i |
⊢ ( 𝑐 ∈ ∅ → ( ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ ∅ “ { 𝑐 } ) → ( ♯ ‘ 𝑥 ) < ( ∅ ‘ 𝑐 ) ) ) |
| 69 |
68
|
ad2antrl |
⊢ ( ( 𝑀 ∈ ℕ ∧ ( 𝑐 ∈ ∅ ∧ 𝑥 ⊆ ( 1 ... ( 𝑀 − 1 ) ) ) ) → ( ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ ∅ “ { 𝑐 } ) → ( ♯ ‘ 𝑥 ) < ( ∅ ‘ 𝑐 ) ) ) |
| 70 |
1 43 44 45 46 66 69
|
ramlb |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) < ( 𝑀 Ramsey ∅ ) ) |
| 71 |
|
ramubcl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ ∅ ∈ V ∧ ∅ : ∅ ⟶ ℕ0 ) ∧ ( 𝑀 ∈ ℕ0 ∧ ( 𝑀 Ramsey ∅ ) ≤ 𝑀 ) ) → ( 𝑀 Ramsey ∅ ) ∈ ℕ0 ) |
| 72 |
2 4 6 2 42 71
|
syl32anc |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 Ramsey ∅ ) ∈ ℕ0 ) |
| 73 |
|
nn0lem1lt |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑀 Ramsey ∅ ) ∈ ℕ0 ) → ( 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ↔ ( 𝑀 − 1 ) < ( 𝑀 Ramsey ∅ ) ) ) |
| 74 |
43 72 73
|
syl2anc2 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ↔ ( 𝑀 − 1 ) < ( 𝑀 Ramsey ∅ ) ) ) |
| 75 |
70 74
|
mpbird |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ) |
| 76 |
75
|
a1i |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∈ ℕ → 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ) ) |
| 77 |
72
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ ( 𝑀 Ramsey ∅ ) ) |
| 78 |
|
breq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ↔ 0 ≤ ( 𝑀 Ramsey ∅ ) ) ) |
| 79 |
77 78
|
syl5ibrcom |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 = 0 → 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ) ) |
| 80 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 81 |
80
|
biimpi |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 82 |
76 79 81
|
mpjaod |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ) |
| 83 |
72
|
nn0red |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 Ramsey ∅ ) ∈ ℝ ) |
| 84 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
| 85 |
83 84
|
letri3d |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑀 Ramsey ∅ ) = 𝑀 ↔ ( ( 𝑀 Ramsey ∅ ) ≤ 𝑀 ∧ 𝑀 ≤ ( 𝑀 Ramsey ∅ ) ) ) ) |
| 86 |
42 82 85
|
mpbir2and |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 Ramsey ∅ ) = 𝑀 ) |