| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 2 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ) → 𝑅 ∈ Fin ) |
| 3 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑅 ∈ Fin ) → ( 𝐹 ∈ ( ℕ0 ↑m 𝑅 ) ↔ 𝐹 : 𝑅 ⟶ ℕ0 ) ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ) → ( 𝐹 ∈ ( ℕ0 ↑m 𝑅 ) ↔ 𝐹 : 𝑅 ⟶ ℕ0 ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 Ramsey 𝑓 ) = ( 0 Ramsey 𝑓 ) ) |
| 6 |
5
|
eleq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ( 0 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 0 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 8 |
7
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ) ↔ ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 0 Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 9 |
|
oveq1 |
⊢ ( 𝑥 = 𝑚 → ( 𝑥 Ramsey 𝑓 ) = ( 𝑚 Ramsey 𝑓 ) ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 11 |
10
|
ralbidv |
⊢ ( 𝑥 = 𝑚 → ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ) ↔ ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( 𝑥 Ramsey 𝑓 ) = ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ) ↔ ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑥 = 𝑀 → ( 𝑥 Ramsey 𝑓 ) = ( 𝑀 Ramsey 𝑓 ) ) |
| 18 |
17
|
eleq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑥 = 𝑀 → ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ↔ ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑥 Ramsey 𝑓 ) ∈ ℕ0 ) ↔ ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 21 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) → 𝑓 : 𝑅 ⟶ ℕ0 ) |
| 22 |
|
0ramcl |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ0 ) → ( 0 Ramsey 𝑓 ) ∈ ℕ0 ) |
| 23 |
21 22
|
sylan2 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ) → ( 0 Ramsey 𝑓 ) ∈ ℕ0 ) |
| 24 |
23
|
ralrimiva |
⊢ ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 0 Ramsey 𝑓 ) ∈ ℕ0 ) |
| 25 |
|
oveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑚 Ramsey 𝑓 ) = ( 𝑚 Ramsey 𝑔 ) ) |
| 26 |
25
|
eleq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 ↔ ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) |
| 27 |
26
|
cbvralvw |
⊢ ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 ↔ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) |
| 28 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) → 𝑅 ∈ Fin ) |
| 29 |
21
|
ad2antrl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) → 𝑓 : 𝑅 ⟶ ℕ0 ) |
| 30 |
29
|
ffvelcdmda |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) ∧ 𝑘 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℕ0 ) |
| 31 |
28 30
|
fsumnn0cl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) → Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ∈ ℕ0 ) |
| 32 |
|
eqeq2 |
⊢ ( 𝑥 = 0 → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ↔ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) ) |
| 33 |
32
|
anbi2d |
⊢ ( 𝑥 = 0 → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) ↔ ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) ) ) |
| 34 |
33
|
imbi1d |
⊢ ( 𝑥 = 0 → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 35 |
34
|
albidv |
⊢ ( 𝑥 = 0 → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 36 |
35
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ↔ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) ) |
| 37 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑛 → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ↔ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) ) |
| 38 |
37
|
anbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) ↔ ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) ) ) |
| 39 |
38
|
imbi1d |
⊢ ( 𝑥 = 𝑛 → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 40 |
39
|
albidv |
⊢ ( 𝑥 = 𝑛 → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑥 = 𝑛 → ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ↔ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) ) |
| 42 |
|
eqeq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ↔ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) |
| 43 |
42
|
anbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) ↔ ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ) |
| 44 |
43
|
imbi1d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 45 |
44
|
albidv |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 46 |
45
|
imbi2d |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ↔ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) ) |
| 47 |
|
eqeq2 |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ↔ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) ) |
| 48 |
47
|
anbi2d |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) ↔ ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 49 |
48
|
imbi1d |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 50 |
49
|
albidv |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 51 |
50
|
imbi2d |
⊢ ( 𝑥 = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) → ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑥 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ↔ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) ) |
| 52 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → 𝑅 ∈ Fin ) |
| 53 |
|
ffvelcdm |
⊢ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ 𝑘 ∈ 𝑅 ) → ( ℎ ‘ 𝑘 ) ∈ ℕ0 ) |
| 54 |
53
|
adantll |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑘 ∈ 𝑅 ) → ( ℎ ‘ 𝑘 ) ∈ ℕ0 ) |
| 55 |
54
|
nn0red |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑘 ∈ 𝑅 ) → ( ℎ ‘ 𝑘 ) ∈ ℝ ) |
| 56 |
54
|
nn0ge0d |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑘 ∈ 𝑅 ) → 0 ≤ ( ℎ ‘ 𝑘 ) ) |
| 57 |
52 55 56
|
fsum00 |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ↔ ∀ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) ) |
| 58 |
|
fvex |
⊢ ( ℎ ‘ 𝑘 ) ∈ V |
| 59 |
58
|
rgenw |
⊢ ∀ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) ∈ V |
| 60 |
|
mpteqb |
⊢ ( ∀ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) ∈ V → ( ( 𝑘 ∈ 𝑅 ↦ ( ℎ ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑅 ↦ 0 ) ↔ ∀ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) ) |
| 61 |
59 60
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑅 ↦ ( ℎ ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑅 ↦ 0 ) ↔ ∀ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) |
| 62 |
57 61
|
bitr4di |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ↔ ( 𝑘 ∈ 𝑅 ↦ ( ℎ ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑅 ↦ 0 ) ) ) |
| 63 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ℎ : 𝑅 ⟶ ℕ0 ) |
| 64 |
63
|
feqmptd |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ℎ = ( 𝑘 ∈ 𝑅 ↦ ( ℎ ‘ 𝑘 ) ) ) |
| 65 |
|
fconstmpt |
⊢ ( 𝑅 × { 0 } ) = ( 𝑘 ∈ 𝑅 ↦ 0 ) |
| 66 |
65
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( 𝑅 × { 0 } ) = ( 𝑘 ∈ 𝑅 ↦ 0 ) ) |
| 67 |
64 66
|
eqeq12d |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( ℎ = ( 𝑅 × { 0 } ) ↔ ( 𝑘 ∈ 𝑅 ↦ ( ℎ ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝑅 ↦ 0 ) ) ) |
| 68 |
62 67
|
bitr4d |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ↔ ℎ = ( 𝑅 × { 0 } ) ) ) |
| 69 |
|
xpeq1 |
⊢ ( 𝑅 = ∅ → ( 𝑅 × { 0 } ) = ( ∅ × { 0 } ) ) |
| 70 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
| 71 |
69 70
|
eqtrdi |
⊢ ( 𝑅 = ∅ → ( 𝑅 × { 0 } ) = ∅ ) |
| 72 |
71
|
oveq2d |
⊢ ( 𝑅 = ∅ → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) = ( ( 𝑚 + 1 ) Ramsey ∅ ) ) |
| 73 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 74 |
|
peano2nn0 |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 75 |
73 74
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 76 |
|
ram0 |
⊢ ( ( 𝑚 + 1 ) ∈ ℕ0 → ( ( 𝑚 + 1 ) Ramsey ∅ ) = ( 𝑚 + 1 ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( ( 𝑚 + 1 ) Ramsey ∅ ) = ( 𝑚 + 1 ) ) |
| 78 |
72 77
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) = ( 𝑚 + 1 ) ) |
| 79 |
75
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 80 |
78 79
|
eqeltrd |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 = ∅ ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) ∈ ℕ0 ) |
| 81 |
75
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 ≠ ∅ ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 82 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 ≠ ∅ ) → 𝑅 ∈ Fin ) |
| 83 |
|
simpr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 ≠ ∅ ) → 𝑅 ≠ ∅ ) |
| 84 |
|
ramz |
⊢ ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝑅 ≠ ∅ ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) = 0 ) |
| 85 |
81 82 83 84
|
syl3anc |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 ≠ ∅ ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) = 0 ) |
| 86 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 87 |
85 86
|
eqeltrdi |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) ∧ 𝑅 ≠ ∅ ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) ∈ ℕ0 ) |
| 88 |
80 87
|
pm2.61dane |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) ∈ ℕ0 ) |
| 89 |
|
oveq2 |
⊢ ( ℎ = ( 𝑅 × { 0 } ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) = ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) ) |
| 90 |
89
|
eleq1d |
⊢ ( ℎ = ( 𝑅 × { 0 } ) → ( ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ↔ ( ( 𝑚 + 1 ) Ramsey ( 𝑅 × { 0 } ) ) ∈ ℕ0 ) ) |
| 91 |
88 90
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( ℎ = ( 𝑅 × { 0 } ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) |
| 92 |
68 91
|
sylbid |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ ℎ : 𝑅 ⟶ ℕ0 ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) |
| 93 |
92
|
expimpd |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) |
| 94 |
93
|
alrimiv |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 0 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) |
| 95 |
|
ffn |
⊢ ( 𝑓 : 𝑅 ⟶ ℕ0 → 𝑓 Fn 𝑅 ) |
| 96 |
95
|
ad2antrl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → 𝑓 Fn 𝑅 ) |
| 97 |
|
ffnfv |
⊢ ( 𝑓 : 𝑅 ⟶ ℕ ↔ ( 𝑓 Fn 𝑅 ∧ ∀ 𝑥 ∈ 𝑅 ( 𝑓 ‘ 𝑥 ) ∈ ℕ ) ) |
| 98 |
97
|
baib |
⊢ ( 𝑓 Fn 𝑅 → ( 𝑓 : 𝑅 ⟶ ℕ ↔ ∀ 𝑥 ∈ 𝑅 ( 𝑓 ‘ 𝑥 ) ∈ ℕ ) ) |
| 99 |
96 98
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( 𝑓 : 𝑅 ⟶ ℕ ↔ ∀ 𝑥 ∈ 𝑅 ( 𝑓 ‘ 𝑥 ) ∈ ℕ ) ) |
| 100 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → 𝑚 ∈ ℕ0 ) |
| 101 |
100
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → 𝑚 ∈ ℕ0 ) |
| 102 |
101 74
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( 𝑚 + 1 ) ∈ ℕ0 ) |
| 103 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → 𝑅 ∈ Fin ) |
| 104 |
|
simprr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → 𝑓 : 𝑅 ⟶ ℕ ) |
| 105 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 106 |
|
fss |
⊢ ( ( 𝑓 : 𝑅 ⟶ ℕ ∧ ℕ ⊆ ℕ0 ) → 𝑓 : 𝑅 ⟶ ℕ0 ) |
| 107 |
104 105 106
|
sylancl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → 𝑓 : 𝑅 ⟶ ℕ0 ) |
| 108 |
101
|
nn0cnd |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → 𝑚 ∈ ℂ ) |
| 109 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 110 |
|
pncan |
⊢ ( ( 𝑚 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 111 |
108 109 110
|
sylancl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( 𝑚 + 1 ) − 1 ) = 𝑚 ) |
| 112 |
111
|
oveq1d |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) = ( 𝑚 Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
| 113 |
|
oveq2 |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ( 𝑚 Ramsey 𝑔 ) = ( 𝑚 Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ) |
| 114 |
113
|
eleq1d |
⊢ ( 𝑔 = ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) → ( ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ↔ ( 𝑚 Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∈ ℕ0 ) ) |
| 115 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) |
| 116 |
115
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) |
| 117 |
103
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → 𝑅 ∈ Fin ) |
| 118 |
117
|
mptexd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ∈ V ) |
| 119 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) |
| 120 |
104
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ ) |
| 121 |
|
nnm1nn0 |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ℕ → ( ( 𝑓 ‘ 𝑥 ) − 1 ) ∈ ℕ0 ) |
| 122 |
120 121
|
syl |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) − 1 ) ∈ ℕ0 ) |
| 123 |
122
|
adantr |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑦 ∈ 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) − 1 ) ∈ ℕ0 ) |
| 124 |
107
|
adantr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → 𝑓 : 𝑅 ⟶ ℕ0 ) |
| 125 |
124
|
ffvelcdmda |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑦 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑦 ) ∈ ℕ0 ) |
| 126 |
123 125
|
ifcld |
⊢ ( ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑦 ∈ 𝑅 ) → if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 127 |
126
|
fmpttd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ) |
| 128 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → 𝑓 : 𝑅 ⟶ ℕ ) |
| 129 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑅 ) |
| 130 |
|
ffvelcdm |
⊢ ( ( 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑘 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℕ ) |
| 131 |
130
|
3ad2antl2 |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℕ ) |
| 132 |
131
|
nncnd |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℂ ) |
| 133 |
132
|
subid1d |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → ( ( 𝑓 ‘ 𝑘 ) − 0 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 134 |
133
|
ifeq2d |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑘 ) − 1 ) , ( ( 𝑓 ‘ 𝑘 ) − 0 ) ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑘 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ) |
| 135 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 136 |
135
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) ∧ 𝑘 = 𝑥 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑥 ) ) |
| 137 |
136
|
oveq1d |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) ∧ 𝑘 = 𝑥 ) → ( ( 𝑓 ‘ 𝑘 ) − 1 ) = ( ( 𝑓 ‘ 𝑥 ) − 1 ) ) |
| 138 |
137
|
ifeq1da |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑘 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ) |
| 139 |
134 138
|
eqtr2d |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑘 ) − 1 ) , ( ( 𝑓 ‘ 𝑘 ) − 0 ) ) ) |
| 140 |
|
ovif2 |
⊢ ( ( 𝑓 ‘ 𝑘 ) − if ( 𝑘 = 𝑥 , 1 , 0 ) ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑘 ) − 1 ) , ( ( 𝑓 ‘ 𝑘 ) − 0 ) ) |
| 141 |
139 140
|
eqtr4di |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = ( ( 𝑓 ‘ 𝑘 ) − if ( 𝑘 = 𝑥 , 1 , 0 ) ) ) |
| 142 |
141
|
sumeq2dv |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = Σ 𝑘 ∈ 𝑅 ( ( 𝑓 ‘ 𝑘 ) − if ( 𝑘 = 𝑥 , 1 , 0 ) ) ) |
| 143 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → 𝑅 ∈ Fin ) |
| 144 |
|
0cn |
⊢ 0 ∈ ℂ |
| 145 |
109 144
|
ifcli |
⊢ if ( 𝑘 = 𝑥 , 1 , 0 ) ∈ ℂ |
| 146 |
145
|
a1i |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) ∧ 𝑘 ∈ 𝑅 ) → if ( 𝑘 = 𝑥 , 1 , 0 ) ∈ ℂ ) |
| 147 |
143 132 146
|
fsumsub |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 ( ( 𝑓 ‘ 𝑘 ) − if ( 𝑘 = 𝑥 , 1 , 0 ) ) = ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , 1 , 0 ) ) ) |
| 148 |
|
elsng |
⊢ ( 𝑘 ∈ 𝑅 → ( 𝑘 ∈ { 𝑥 } ↔ 𝑘 = 𝑥 ) ) |
| 149 |
148
|
ifbid |
⊢ ( 𝑘 ∈ 𝑅 → if ( 𝑘 ∈ { 𝑥 } , 1 , 0 ) = if ( 𝑘 = 𝑥 , 1 , 0 ) ) |
| 150 |
149
|
sumeq2i |
⊢ Σ 𝑘 ∈ 𝑅 if ( 𝑘 ∈ { 𝑥 } , 1 , 0 ) = Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , 1 , 0 ) |
| 151 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ 𝑅 ) |
| 152 |
151
|
snssd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → { 𝑥 } ⊆ 𝑅 ) |
| 153 |
|
sumhash |
⊢ ( ( 𝑅 ∈ Fin ∧ { 𝑥 } ⊆ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 ∈ { 𝑥 } , 1 , 0 ) = ( ♯ ‘ { 𝑥 } ) ) |
| 154 |
143 152 153
|
syl2anc |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 ∈ { 𝑥 } , 1 , 0 ) = ( ♯ ‘ { 𝑥 } ) ) |
| 155 |
|
hashsng |
⊢ ( 𝑥 ∈ 𝑅 → ( ♯ ‘ { 𝑥 } ) = 1 ) |
| 156 |
151 155
|
syl |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → ( ♯ ‘ { 𝑥 } ) = 1 ) |
| 157 |
154 156
|
eqtrd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 ∈ { 𝑥 } , 1 , 0 ) = 1 ) |
| 158 |
150 157
|
eqtr3id |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , 1 , 0 ) = 1 ) |
| 159 |
158
|
oveq2d |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) − Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , 1 , 0 ) ) = ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) − 1 ) ) |
| 160 |
142 147 159
|
3eqtrd |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) − 1 ) ) |
| 161 |
117 128 129 160
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) − 1 ) ) |
| 162 |
|
simplrl |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) |
| 163 |
162
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
| 164 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) → 𝑛 ∈ ℕ0 ) |
| 165 |
164
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → 𝑛 ∈ ℕ0 ) |
| 166 |
165
|
nn0cnd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → 𝑛 ∈ ℂ ) |
| 167 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 168 |
166 109 167
|
sylancl |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 169 |
161 163 168
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = 𝑛 ) |
| 170 |
127 169
|
jca |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = 𝑛 ) ) |
| 171 |
|
feq1 |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( ℎ : 𝑅 ⟶ ℕ0 ↔ ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ) ) |
| 172 |
|
fveq1 |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( ℎ ‘ 𝑘 ) = ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ‘ 𝑘 ) ) |
| 173 |
|
equequ1 |
⊢ ( 𝑦 = 𝑘 → ( 𝑦 = 𝑥 ↔ 𝑘 = 𝑥 ) ) |
| 174 |
|
fveq2 |
⊢ ( 𝑦 = 𝑘 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 175 |
173 174
|
ifbieq2d |
⊢ ( 𝑦 = 𝑘 → if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ) |
| 176 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) |
| 177 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑥 ) − 1 ) ∈ V |
| 178 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑘 ) ∈ V |
| 179 |
177 178
|
ifex |
⊢ if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ∈ V |
| 180 |
175 176 179
|
fvmpt |
⊢ ( 𝑘 ∈ 𝑅 → ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ‘ 𝑘 ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ) |
| 181 |
172 180
|
sylan9eq |
⊢ ( ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑅 ) → ( ℎ ‘ 𝑘 ) = if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ) |
| 182 |
181
|
sumeq2dv |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) ) |
| 183 |
182
|
eqeq1d |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ↔ Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = 𝑛 ) ) |
| 184 |
171 183
|
anbi12d |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) ↔ ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = 𝑛 ) ) ) |
| 185 |
|
oveq2 |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) = ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 186 |
185
|
eleq1d |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ↔ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℕ0 ) ) |
| 187 |
184 186
|
imbi12d |
⊢ ( ℎ = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℕ0 ) ) ) |
| 188 |
187
|
spcgv |
⊢ ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ∈ V → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 if ( 𝑘 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑘 ) ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℕ0 ) ) ) |
| 189 |
118 119 170 188
|
syl3c |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ∈ ℕ0 ) |
| 190 |
189
|
fmpttd |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) : 𝑅 ⟶ ℕ0 ) |
| 191 |
|
elmapg |
⊢ ( ( ℕ0 ∈ V ∧ 𝑅 ∈ Fin ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ∈ ( ℕ0 ↑m 𝑅 ) ↔ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) : 𝑅 ⟶ ℕ0 ) ) |
| 192 |
1 103 191
|
sylancr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ∈ ( ℕ0 ↑m 𝑅 ) ↔ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) : 𝑅 ⟶ ℕ0 ) ) |
| 193 |
190 192
|
mpbird |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ∈ ( ℕ0 ↑m 𝑅 ) ) |
| 194 |
114 116 193
|
rspcdva |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( 𝑚 Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∈ ℕ0 ) |
| 195 |
112 194
|
eqeltrd |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∈ ℕ0 ) |
| 196 |
|
peano2nn0 |
⊢ ( ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) ∈ ℕ0 → ( ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) + 1 ) ∈ ℕ0 ) |
| 197 |
195 196
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) + 1 ) ∈ ℕ0 ) |
| 198 |
|
nn0p1nn |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑚 + 1 ) ∈ ℕ ) |
| 199 |
100 198
|
syl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 200 |
199
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 201 |
|
equequ1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 = 𝑥 ↔ 𝑤 = 𝑥 ) ) |
| 202 |
|
fveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 203 |
201 202
|
ifbieq2d |
⊢ ( 𝑦 = 𝑤 → if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) = if ( 𝑤 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) |
| 204 |
203
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑤 ∈ 𝑅 ↦ if ( 𝑤 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) |
| 205 |
|
eqeq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 = 𝑥 ↔ 𝑤 = 𝑧 ) ) |
| 206 |
|
fveq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 207 |
206
|
oveq1d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑓 ‘ 𝑥 ) − 1 ) = ( ( 𝑓 ‘ 𝑧 ) − 1 ) ) |
| 208 |
205 207
|
ifbieq1d |
⊢ ( 𝑥 = 𝑧 → if ( 𝑤 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) = if ( 𝑤 = 𝑧 , ( ( 𝑓 ‘ 𝑧 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) |
| 209 |
208
|
mpteq2dv |
⊢ ( 𝑥 = 𝑧 → ( 𝑤 ∈ 𝑅 ↦ if ( 𝑤 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) = ( 𝑤 ∈ 𝑅 ↦ if ( 𝑤 = 𝑧 , ( ( 𝑓 ‘ 𝑧 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 210 |
204 209
|
eqtrid |
⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) = ( 𝑤 ∈ 𝑅 ↦ if ( 𝑤 = 𝑧 , ( ( 𝑓 ‘ 𝑧 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) ) |
| 211 |
210
|
oveq2d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) = ( ( 𝑚 + 1 ) Ramsey ( 𝑤 ∈ 𝑅 ↦ if ( 𝑤 = 𝑧 , ( ( 𝑓 ‘ 𝑧 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 212 |
211
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) = ( 𝑧 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑤 ∈ 𝑅 ↦ if ( 𝑤 = 𝑧 , ( ( 𝑓 ‘ 𝑧 ) − 1 ) , ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 213 |
200 103 104 212 190 195
|
ramub1 |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ≤ ( ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) + 1 ) ) |
| 214 |
|
ramubcl |
⊢ ( ( ( ( 𝑚 + 1 ) ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ0 ) ∧ ( ( ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) + 1 ) ∈ ℕ0 ∧ ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ≤ ( ( ( ( 𝑚 + 1 ) − 1 ) Ramsey ( 𝑥 ∈ 𝑅 ↦ ( ( 𝑚 + 1 ) Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝑓 ‘ 𝑥 ) − 1 ) , ( 𝑓 ‘ 𝑦 ) ) ) ) ) ) + 1 ) ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) |
| 215 |
102 103 107 197 213 214
|
syl32anc |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ∧ 𝑓 : 𝑅 ⟶ ℕ ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) |
| 216 |
215
|
expr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( 𝑓 : 𝑅 ⟶ ℕ → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 217 |
216
|
adantrl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( 𝑓 : 𝑅 ⟶ ℕ → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 218 |
99 217
|
sylbird |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( ∀ 𝑥 ∈ 𝑅 ( 𝑓 ‘ 𝑥 ) ∈ ℕ → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 219 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝑅 ¬ ( 𝑓 ‘ 𝑥 ) ∈ ℕ ↔ ¬ ∀ 𝑥 ∈ 𝑅 ( 𝑓 ‘ 𝑥 ) ∈ ℕ ) |
| 220 |
|
simprl |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → 𝑓 : 𝑅 ⟶ ℕ0 ) |
| 221 |
220
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ 𝑥 ∈ 𝑅 ) → ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ) |
| 222 |
|
elnn0 |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ℕ0 ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 223 |
221 222
|
sylib |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) ∈ ℕ ∨ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 224 |
223
|
ord |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ¬ ( 𝑓 ‘ 𝑥 ) ∈ ℕ → ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
| 225 |
199
|
ad2antrr |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 226 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → 𝑅 ∈ Fin ) |
| 227 |
225 226 220
|
3jca |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( ( 𝑚 + 1 ) ∈ ℕ ∧ 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ0 ) ) |
| 228 |
|
ramz2 |
⊢ ( ( ( ( 𝑚 + 1 ) ∈ ℕ ∧ 𝑅 ∈ Fin ∧ 𝑓 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝑥 ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑥 ) = 0 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) = 0 ) |
| 229 |
227 228
|
sylan |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑥 ) = 0 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) = 0 ) |
| 230 |
229 86
|
eqeltrdi |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ ( 𝑓 ‘ 𝑥 ) = 0 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) |
| 231 |
230
|
expr |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ( 𝑓 ‘ 𝑥 ) = 0 → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 232 |
224 231
|
syld |
⊢ ( ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ∧ 𝑥 ∈ 𝑅 ) → ( ¬ ( 𝑓 ‘ 𝑥 ) ∈ ℕ → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 233 |
232
|
rexlimdva |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( ∃ 𝑥 ∈ 𝑅 ¬ ( 𝑓 ‘ 𝑥 ) ∈ ℕ → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 234 |
219 233
|
biimtrrid |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( ¬ ∀ 𝑥 ∈ 𝑅 ( 𝑓 ‘ 𝑥 ) ∈ ℕ → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 235 |
218 234
|
pm2.61d |
⊢ ( ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) ∧ ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ∧ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) |
| 236 |
235
|
exp31 |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ( ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 237 |
236
|
alrimdv |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ∀ 𝑓 ( ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 238 |
|
feq1 |
⊢ ( ℎ = 𝑓 → ( ℎ : 𝑅 ⟶ ℕ0 ↔ 𝑓 : 𝑅 ⟶ ℕ0 ) ) |
| 239 |
|
fveq1 |
⊢ ( ℎ = 𝑓 → ( ℎ ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 240 |
239
|
sumeq2sdv |
⊢ ( ℎ = 𝑓 → Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) |
| 241 |
240
|
eqeq1d |
⊢ ( ℎ = 𝑓 → ( Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ↔ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) |
| 242 |
238 241
|
anbi12d |
⊢ ( ℎ = 𝑓 → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ↔ ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) ) ) |
| 243 |
|
oveq2 |
⊢ ( ℎ = 𝑓 → ( ( 𝑚 + 1 ) Ramsey ℎ ) = ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ) |
| 244 |
243
|
eleq1d |
⊢ ( ℎ = 𝑓 → ( ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ↔ ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 245 |
242 244
|
imbi12d |
⊢ ( ℎ = 𝑓 → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 246 |
245
|
cbvalvw |
⊢ ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ∀ 𝑓 ( ( 𝑓 : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 247 |
237 246
|
imbitrrdi |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ∧ 𝑛 ∈ ℕ0 ) ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 248 |
247
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 249 |
248
|
expcom |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) ) |
| 250 |
249
|
a2d |
⊢ ( 𝑛 ∈ ℕ0 → ( ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = 𝑛 ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) → ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = ( 𝑛 + 1 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) ) |
| 251 |
36 41 46 51 94 250
|
nn0ind |
⊢ ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ∈ ℕ0 → ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 252 |
251
|
com12 |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) → ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ∈ ℕ0 → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 253 |
252
|
adantrl |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) → ( Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ∈ ℕ0 → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) ) |
| 254 |
31 253
|
mpd |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) → ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ) |
| 255 |
240
|
biantrud |
⊢ ( ℎ = 𝑓 → ( ℎ : 𝑅 ⟶ ℕ0 ↔ ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 256 |
255 238
|
bitr3d |
⊢ ( ℎ = 𝑓 → ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) ↔ 𝑓 : 𝑅 ⟶ ℕ0 ) ) |
| 257 |
256 244
|
imbi12d |
⊢ ( ℎ = 𝑓 → ( ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) ↔ ( 𝑓 : 𝑅 ⟶ ℕ0 → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 258 |
257
|
spvv |
⊢ ( ∀ ℎ ( ( ℎ : 𝑅 ⟶ ℕ0 ∧ Σ 𝑘 ∈ 𝑅 ( ℎ ‘ 𝑘 ) = Σ 𝑘 ∈ 𝑅 ( 𝑓 ‘ 𝑘 ) ) → ( ( 𝑚 + 1 ) Ramsey ℎ ) ∈ ℕ0 ) → ( 𝑓 : 𝑅 ⟶ ℕ0 → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 259 |
254 29 258
|
sylc |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ ( 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ∧ ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 ) ) → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) |
| 260 |
259
|
expr |
⊢ ( ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) ∧ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ) → ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 → ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 261 |
260
|
ralrimdva |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) → ( ∀ 𝑔 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑔 ) ∈ ℕ0 → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 262 |
27 261
|
biimtrid |
⊢ ( ( 𝑅 ∈ Fin ∧ 𝑚 ∈ ℕ0 ) → ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 263 |
262
|
expcom |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝑅 ∈ Fin → ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 264 |
263
|
a2d |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑚 Ramsey 𝑓 ) ∈ ℕ0 ) → ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( ( 𝑚 + 1 ) Ramsey 𝑓 ) ∈ ℕ0 ) ) ) |
| 265 |
8 12 16 20 24 264
|
nn0ind |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑅 ∈ Fin → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 ) ) |
| 266 |
265
|
imp |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ) → ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 ) |
| 267 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝑀 Ramsey 𝑓 ) = ( 𝑀 Ramsey 𝐹 ) ) |
| 268 |
267
|
eleq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 ↔ ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) ) |
| 269 |
268
|
rspccv |
⊢ ( ∀ 𝑓 ∈ ( ℕ0 ↑m 𝑅 ) ( 𝑀 Ramsey 𝑓 ) ∈ ℕ0 → ( 𝐹 ∈ ( ℕ0 ↑m 𝑅 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) ) |
| 270 |
266 269
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ) → ( 𝐹 ∈ ( ℕ0 ↑m 𝑅 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) ) |
| 271 |
4 270
|
sylbird |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ) → ( 𝐹 : 𝑅 ⟶ ℕ0 → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) ) |
| 272 |
271
|
3impia |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ Fin ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |