Metamath Proof Explorer


Theorem ramcl2

Description: The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Assertion ramcl2 ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )

Proof

Step Hyp Ref Expression
1 eqid ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 eqid { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
3 1 2 ramcl2lem ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } = ∅ , +∞ , inf ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } , ℝ , < ) ) )
4 iftrue ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } = ∅ → if ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } = ∅ , +∞ , inf ( { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } , ℝ , < ) ) = +∞ )
5 3 4 sylan9eq ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } = ∅ ) → ( 𝑀 Ramsey 𝐹 ) = +∞ )
6 ssun2 { +∞ } ⊆ ( ℕ0 ∪ { +∞ } )
7 pnfex +∞ ∈ V
8 7 snss ( +∞ ∈ ( ℕ0 ∪ { +∞ } ) ↔ { +∞ } ⊆ ( ℕ0 ∪ { +∞ } ) )
9 6 8 mpbir +∞ ∈ ( ℕ0 ∪ { +∞ } )
10 5 9 eqeltrdi ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } = ∅ ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )
11 ssun1 0 ⊆ ( ℕ0 ∪ { +∞ } )
12 1 2 ramtcl2 ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } ≠ ∅ ) )
13 12 biimpar ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } ≠ ∅ ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 )
14 11 13 sselid ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) } ≠ ∅ ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )
15 10 14 pm2.61dane ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )