Metamath Proof Explorer


Theorem ramcl2lem

Description: Lemma for extended real closure of the Ramsey number function. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
ramval.t 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
Assertion ramcl2lem ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 ramval.t 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
3 eqeq2 ( +∞ = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) → ( ( 𝑀 Ramsey 𝐹 ) = +∞ ↔ ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ) )
4 eqeq2 ( inf ( 𝑇 , ℝ , < ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) → ( ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ , < ) ↔ ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ) )
5 1 2 ramval ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ* , < ) )
6 infeq1 ( 𝑇 = ∅ → inf ( 𝑇 , ℝ* , < ) = inf ( ∅ , ℝ* , < ) )
7 xrinf0 inf ( ∅ , ℝ* , < ) = +∞
8 6 7 eqtrdi ( 𝑇 = ∅ → inf ( 𝑇 , ℝ* , < ) = +∞ )
9 5 8 sylan9eq ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 = ∅ ) → ( 𝑀 Ramsey 𝐹 ) = +∞ )
10 df-ne ( 𝑇 ≠ ∅ ↔ ¬ 𝑇 = ∅ )
11 5 adantr ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ* , < ) )
12 xrltso < Or ℝ*
13 12 a1i ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → < Or ℝ* )
14 2 ssrab3 𝑇 ⊆ ℕ0
15 nn0ssre 0 ⊆ ℝ
16 14 15 sstri 𝑇 ⊆ ℝ
17 nn0uz 0 = ( ℤ ‘ 0 )
18 14 17 sseqtri 𝑇 ⊆ ( ℤ ‘ 0 )
19 18 a1i ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑇 ⊆ ( ℤ ‘ 0 ) )
20 infssuzcl ( ( 𝑇 ⊆ ( ℤ ‘ 0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 )
21 19 20 sylan ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 )
22 16 21 sselid ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ ℝ )
23 22 rexrd ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ ℝ* )
24 22 adantr ( ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑧𝑇 ) → inf ( 𝑇 , ℝ , < ) ∈ ℝ )
25 16 a1i ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → 𝑇 ⊆ ℝ )
26 25 sselda ( ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑧𝑇 ) → 𝑧 ∈ ℝ )
27 simpr ( ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑧𝑇 ) → 𝑧𝑇 )
28 infssuzle ( ( 𝑇 ⊆ ( ℤ ‘ 0 ) ∧ 𝑧𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑧 )
29 18 27 28 sylancr ( ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑧𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝑧 )
30 24 26 29 lensymd ( ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) ∧ 𝑧𝑇 ) → ¬ 𝑧 < inf ( 𝑇 , ℝ , < ) )
31 13 23 21 30 infmin ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ* , < ) = inf ( 𝑇 , ℝ , < ) )
32 11 31 eqtrd ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ , < ) )
33 10 32 sylan2br ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ¬ 𝑇 = ∅ ) → ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ , < ) )
34 3 4 9 33 ifbothda ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) )