Step |
Hyp |
Ref |
Expression |
1 |
|
rami.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
rami.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
rami.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
rami.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ0 ) |
5 |
|
rami.x |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |
6 |
|
rami.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
7 |
|
rami.l |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑆 ) ) |
8 |
|
rami.g |
⊢ ( 𝜑 → 𝐺 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) |
9 |
|
cnveq |
⊢ ( 𝑓 = 𝐺 → ◡ 𝑓 = ◡ 𝐺 ) |
10 |
9
|
imaeq1d |
⊢ ( 𝑓 = 𝐺 → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ 𝐺 “ { 𝑐 } ) ) |
11 |
10
|
sseq2d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑓 = 𝐺 → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ) |
13 |
12
|
2rexbidv |
⊢ ( 𝑓 = 𝐺 → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) ) |
14 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } |
15 |
1 14
|
ramtcl2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ≠ ∅ ) ) |
16 |
1 14
|
ramtcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ↔ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ≠ ∅ ) ) |
17 |
15 16
|
bitr4d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ ( 𝑀 Ramsey 𝐹 ) ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ) ) |
18 |
2 3 4 17
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ ( 𝑀 Ramsey 𝐹 ) ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ) ) |
19 |
5 18
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ) |
20 |
|
breq1 |
⊢ ( 𝑛 = ( 𝑀 Ramsey 𝐹 ) → ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) ↔ ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) ) ) |
21 |
20
|
imbi1d |
⊢ ( 𝑛 = ( 𝑀 Ramsey 𝐹 ) → ( ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ↔ ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
22 |
21
|
albidv |
⊢ ( 𝑛 = ( 𝑀 Ramsey 𝐹 ) → ( ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ↔ ∀ 𝑠 ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
23 |
22
|
elrab |
⊢ ( ( 𝑀 Ramsey 𝐹 ) ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ↔ ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ∧ ∀ 𝑠 ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
24 |
23
|
simprbi |
⊢ ( ( 𝑀 Ramsey 𝐹 ) ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } → ∀ 𝑠 ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
25 |
19 24
|
syl |
⊢ ( 𝜑 → ∀ 𝑠 ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑠 = 𝑆 → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ 𝑆 ) ) |
27 |
26
|
breq2d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) ↔ ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑆 ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 𝐶 𝑀 ) = ( 𝑆 𝐶 𝑀 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑠 = 𝑆 → ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) = ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ) |
30 |
|
pweq |
⊢ ( 𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆 ) |
31 |
30
|
rexeqdv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑠 = 𝑆 → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
33 |
29 32
|
raleqbidv |
⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
34 |
27 33
|
imbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ↔ ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑆 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
35 |
34
|
spcgv |
⊢ ( 𝑆 ∈ 𝑊 → ( ∀ 𝑠 ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) → ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ 𝑆 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
36 |
6 25 7 35
|
syl3c |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
37 |
|
ovex |
⊢ ( 𝑆 𝐶 𝑀 ) ∈ V |
38 |
|
elmapg |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ ( 𝑆 𝐶 𝑀 ) ∈ V ) → ( 𝐺 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ↔ 𝐺 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) ) |
39 |
3 37 38
|
sylancl |
⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ↔ 𝐺 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) ) |
40 |
8 39
|
mpbird |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑅 ↑m ( 𝑆 𝐶 𝑀 ) ) ) |
41 |
13 36 40
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |