Step |
Hyp |
Ref |
Expression |
1 |
|
ramlb.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
ramlb.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
ramlb.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
ramlb.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ0 ) |
5 |
|
ramlb.s |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
ramlb.g |
⊢ ( 𝜑 → 𝐺 : ( ( 1 ... 𝑁 ) 𝐶 𝑀 ) ⟶ 𝑅 ) |
7 |
|
ramlb.i |
⊢ ( ( 𝜑 ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ( ♯ ‘ 𝑥 ) < ( 𝐹 ‘ 𝑐 ) ) ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → 𝑀 ∈ ℕ0 ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → 𝑅 ∈ 𝑉 ) |
10 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
11 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) |
13 |
|
ramubcl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝑁 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |
14 |
8 9 10 11 12 13
|
syl32anc |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |
15 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ( 1 ... 𝑁 ) ∈ Fin ) |
16 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
17 |
5 16
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
18 |
17
|
breq2d |
⊢ ( 𝜑 → ( ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ ( 1 ... 𝑁 ) ) ↔ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ) |
19 |
18
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ( 𝑀 Ramsey 𝐹 ) ≤ ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → 𝐺 : ( ( 1 ... 𝑁 ) 𝐶 𝑀 ) ⟶ 𝑅 ) |
21 |
1 8 9 10 14 15 19 20
|
rami |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |
22 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) → 𝑥 ⊆ ( 1 ... 𝑁 ) ) |
23 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ( ♯ ‘ 𝑥 ) < ( 𝐹 ‘ 𝑐 ) ) ) |
24 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
25 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → 𝑥 ⊆ ( 1 ... 𝑁 ) ) |
26 |
24 25
|
ssfid |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → 𝑥 ∈ Fin ) |
27 |
|
hashcl |
⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
28 |
26 27
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℕ0 ) |
29 |
28
|
nn0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( ♯ ‘ 𝑥 ) ∈ ℝ ) |
30 |
|
simpl |
⊢ ( ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) → 𝑐 ∈ 𝑅 ) |
31 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝑅 ⟶ ℕ0 ∧ 𝑐 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
32 |
10 30 31
|
syl2an |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
33 |
32
|
nn0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℝ ) |
34 |
29 33
|
ltnled |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( ( ♯ ‘ 𝑥 ) < ( 𝐹 ‘ 𝑐 ) ↔ ¬ ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ) ) |
35 |
23 34
|
sylibd |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ⊆ ( 1 ... 𝑁 ) ) ) → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ¬ ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ) ) |
36 |
22 35
|
sylanr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) ) ) → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) → ¬ ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ) ) |
37 |
36
|
con2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) → ¬ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |
38 |
|
imnan |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) → ¬ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ↔ ¬ ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |
39 |
37 38
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) ) ) → ¬ ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) ) |
40 |
39
|
pm2.21d |
⊢ ( ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) → ¬ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ) |
41 |
40
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 ( 1 ... 𝑁 ) ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝐺 “ { 𝑐 } ) ) → ¬ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ) |
42 |
21 41
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) → ¬ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) |
43 |
42
|
pm2.01da |
⊢ ( 𝜑 → ¬ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) |
44 |
5
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
45 |
44
|
rexrd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ* ) |
46 |
|
ramxrcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* ) |
47 |
2 3 4 46
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* ) |
48 |
|
xrltnle |
⊢ ( ( 𝑁 ∈ ℝ* ∧ ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* ) → ( 𝑁 < ( 𝑀 Ramsey 𝐹 ) ↔ ¬ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 < ( 𝑀 Ramsey 𝐹 ) ↔ ¬ ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) ) |
50 |
43 49
|
mpbird |
⊢ ( 𝜑 → 𝑁 < ( 𝑀 Ramsey 𝐹 ) ) |