Metamath Proof Explorer


Theorem ramtcl

Description: The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
ramval.t 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
Assertion ramtcl ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇𝑇 ≠ ∅ ) )

Proof

Step Hyp Ref Expression
1 ramval.c 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } )
2 ramval.t 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐𝑅𝑥 ∈ 𝒫 𝑠 ( ( 𝐹𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( 𝑓 “ { 𝑐 } ) ) ) }
3 ne0i ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇𝑇 ≠ ∅ )
4 1 2 ramcl2lem ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) )
5 ifnefalse ( 𝑇 ≠ ∅ → if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) = inf ( 𝑇 , ℝ , < ) )
6 4 5 sylan9eq ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ , < ) )
7 2 ssrab3 𝑇 ⊆ ℕ0
8 nn0uz 0 = ( ℤ ‘ 0 )
9 7 8 sseqtri 𝑇 ⊆ ( ℤ ‘ 0 )
10 9 a1i ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑇 ⊆ ( ℤ ‘ 0 ) )
11 infssuzcl ( ( 𝑇 ⊆ ( ℤ ‘ 0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 )
12 10 11 sylan ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → inf ( 𝑇 , ℝ , < ) ∈ 𝑇 )
13 6 12 eqeltrd ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑇 ≠ ∅ ) → ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇 )
14 13 ex ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑇 ≠ ∅ → ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇 ) )
15 3 14 impbid2 ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇𝑇 ≠ ∅ ) )