| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramval.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | ramval.t | ⊢ 𝑇  =  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } | 
						
							| 3 |  | ne0i | ⊢ ( ( 𝑀  Ramsey  𝐹 )  ∈  𝑇  →  𝑇  ≠  ∅ ) | 
						
							| 4 | 1 2 | ramcl2lem | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( 𝑀  Ramsey  𝐹 )  =  if ( 𝑇  =  ∅ ,  +∞ ,  inf ( 𝑇 ,  ℝ ,   <  ) ) ) | 
						
							| 5 |  | ifnefalse | ⊢ ( 𝑇  ≠  ∅  →  if ( 𝑇  =  ∅ ,  +∞ ,  inf ( 𝑇 ,  ℝ ,   <  ) )  =  inf ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 6 | 4 5 | sylan9eq | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  𝑇  ≠  ∅ )  →  ( 𝑀  Ramsey  𝐹 )  =  inf ( 𝑇 ,  ℝ ,   <  ) ) | 
						
							| 7 | 2 | ssrab3 | ⊢ 𝑇  ⊆  ℕ0 | 
						
							| 8 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 9 | 7 8 | sseqtri | ⊢ 𝑇  ⊆  ( ℤ≥ ‘ 0 ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  𝑇  ⊆  ( ℤ≥ ‘ 0 ) ) | 
						
							| 11 |  | infssuzcl | ⊢ ( ( 𝑇  ⊆  ( ℤ≥ ‘ 0 )  ∧  𝑇  ≠  ∅ )  →  inf ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 12 | 10 11 | sylan | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  𝑇  ≠  ∅ )  →  inf ( 𝑇 ,  ℝ ,   <  )  ∈  𝑇 ) | 
						
							| 13 | 6 12 | eqeltrd | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  𝑇  ≠  ∅ )  →  ( 𝑀  Ramsey  𝐹 )  ∈  𝑇 ) | 
						
							| 14 | 13 | ex | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( 𝑇  ≠  ∅  →  ( 𝑀  Ramsey  𝐹 )  ∈  𝑇 ) ) | 
						
							| 15 | 3 14 | impbid2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( ( 𝑀  Ramsey  𝐹 )  ∈  𝑇  ↔  𝑇  ≠  ∅ ) ) |