Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
ramval.t |
⊢ 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } |
3 |
1 2
|
ramcl2lem |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ) |
4 |
3
|
eleq1d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 ) ) |
5 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
6 |
5
|
neli |
⊢ ¬ +∞ ∈ ℝ |
7 |
|
iftrue |
⊢ ( 𝑇 = ∅ → if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) = +∞ ) |
8 |
7
|
eleq1d |
⊢ ( 𝑇 = ∅ → ( if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 ↔ +∞ ∈ ℕ0 ) ) |
9 |
|
nn0re |
⊢ ( +∞ ∈ ℕ0 → +∞ ∈ ℝ ) |
10 |
8 9
|
syl6bi |
⊢ ( 𝑇 = ∅ → ( if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 → +∞ ∈ ℝ ) ) |
11 |
6 10
|
mtoi |
⊢ ( 𝑇 = ∅ → ¬ if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 ) |
12 |
11
|
necon2ai |
⊢ ( if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ∈ ℕ0 → 𝑇 ≠ ∅ ) |
13 |
4 12
|
syl6bi |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 → 𝑇 ≠ ∅ ) ) |
14 |
1 2
|
ramtcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇 ↔ 𝑇 ≠ ∅ ) ) |
15 |
2
|
ssrab3 |
⊢ 𝑇 ⊆ ℕ0 |
16 |
15
|
sseli |
⊢ ( ( 𝑀 Ramsey 𝐹 ) ∈ 𝑇 → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |
17 |
14 16
|
syl6bir |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑇 ≠ ∅ → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) ) |
18 |
13 17
|
impbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ↔ 𝑇 ≠ ∅ ) ) |