Step |
Hyp |
Ref |
Expression |
1 |
|
ramval.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
ramval.t |
⊢ 𝑇 = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } |
3 |
1 2
|
ramcl2lem |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) = if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) ) |
4 |
|
n0i |
⊢ ( 𝐴 ∈ 𝑇 → ¬ 𝑇 = ∅ ) |
5 |
4
|
iffalsed |
⊢ ( 𝐴 ∈ 𝑇 → if ( 𝑇 = ∅ , +∞ , inf ( 𝑇 , ℝ , < ) ) = inf ( 𝑇 , ℝ , < ) ) |
6 |
3 5
|
sylan9eq |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝑀 Ramsey 𝐹 ) = inf ( 𝑇 , ℝ , < ) ) |
7 |
2
|
ssrab3 |
⊢ 𝑇 ⊆ ℕ0 |
8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
9 |
7 8
|
sseqtri |
⊢ 𝑇 ⊆ ( ℤ≥ ‘ 0 ) |
10 |
9
|
a1i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → 𝑇 ⊆ ( ℤ≥ ‘ 0 ) ) |
11 |
|
infssuzle |
⊢ ( ( 𝑇 ⊆ ( ℤ≥ ‘ 0 ) ∧ 𝐴 ∈ 𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝐴 ) |
12 |
10 11
|
sylan |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝐴 ∈ 𝑇 ) → inf ( 𝑇 , ℝ , < ) ≤ 𝐴 ) |
13 |
6 12
|
eqbrtrd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝐴 ∈ 𝑇 ) → ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) |