Step |
Hyp |
Ref |
Expression |
1 |
|
rami.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
rami.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
3 |
|
rami.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
4 |
|
rami.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ0 ) |
5 |
|
ramub.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
ramub.i |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) ↔ 𝑁 ≤ ( ♯ ‘ 𝑠 ) ) ) |
8 |
7
|
imbi1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ↔ ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
9 |
8
|
albidv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ↔ ∀ 𝑠 ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) ) |
10 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) → 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) |
11 |
6
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ∧ 𝑁 ≤ ( ♯ ‘ 𝑠 ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
12 |
11
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
13 |
10 12
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ) → ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
14 |
13
|
ralrimdva |
⊢ ( 𝜑 → ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
15 |
14
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑠 ( 𝑁 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
16 |
9 5 15
|
elrabd |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ) |
17 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } = { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } |
18 |
1 17
|
ramtub |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ 𝑁 ∈ { 𝑛 ∈ ℕ0 ∣ ∀ 𝑠 ( 𝑛 ≤ ( ♯ ‘ 𝑠 ) → ∀ 𝑓 ∈ ( 𝑅 ↑m ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) } ) → ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) |
19 |
2 3 4 16 18
|
syl31anc |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) |