Step |
Hyp |
Ref |
Expression |
1 |
|
ramub1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
ramub1.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
3 |
|
ramub1.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ ) |
4 |
|
ramub1.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑅 ↦ ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝐹 ‘ 𝑥 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
5 |
|
ramub1.1 |
⊢ ( 𝜑 → 𝐺 : 𝑅 ⟶ ℕ0 ) |
6 |
|
ramub1.2 |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 ) |
7 |
|
eqid |
⊢ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
8 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
9 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
10 |
|
fss |
⊢ ( ( 𝐹 : 𝑅 ⟶ ℕ ∧ ℕ ⊆ ℕ0 ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
11 |
3 9 10
|
sylancl |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ0 ) |
12 |
|
peano2nn0 |
⊢ ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 → ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∈ ℕ0 ) |
13 |
6 12
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∈ ℕ0 ) |
14 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 ) |
16 |
|
nn0p1nn |
⊢ ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 → ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∈ ℕ ) |
17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∈ ℕ ) |
18 |
14 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ♯ ‘ 𝑠 ) ∈ ℕ ) |
19 |
18
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
20 |
|
hashclb |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ Fin ↔ ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) ) |
21 |
20
|
elv |
⊢ ( 𝑠 ∈ Fin ↔ ( ♯ ‘ 𝑠 ) ∈ ℕ0 ) |
22 |
19 21
|
sylibr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → 𝑠 ∈ Fin ) |
23 |
|
hashnncl |
⊢ ( 𝑠 ∈ Fin → ( ( ♯ ‘ 𝑠 ) ∈ ℕ ↔ 𝑠 ≠ ∅ ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ( ♯ ‘ 𝑠 ) ∈ ℕ ↔ 𝑠 ≠ ∅ ) ) |
25 |
18 24
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → 𝑠 ≠ ∅ ) |
26 |
|
n0 |
⊢ ( 𝑠 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑠 ) |
27 |
25 26
|
sylib |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑤 𝑤 ∈ 𝑠 ) |
28 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝑀 ∈ ℕ ) |
29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝑅 ∈ Fin ) |
30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝐹 : 𝑅 ⟶ ℕ ) |
31 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝐺 : 𝑅 ⟶ ℕ0 ) |
32 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 ) |
33 |
22
|
adantrr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝑠 ∈ Fin ) |
34 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |
35 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) |
36 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → 𝑤 ∈ 𝑠 ) |
37 |
|
uneq1 |
⊢ ( 𝑣 = 𝑢 → ( 𝑣 ∪ { 𝑤 } ) = ( 𝑢 ∪ { 𝑤 } ) ) |
38 |
37
|
fveq2d |
⊢ ( 𝑣 = 𝑢 → ( 𝑓 ‘ ( 𝑣 ∪ { 𝑤 } ) ) = ( 𝑓 ‘ ( 𝑢 ∪ { 𝑤 } ) ) ) |
39 |
38
|
cbvmptv |
⊢ ( 𝑣 ∈ ( ( 𝑠 ∖ { 𝑤 } ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) ( 𝑀 − 1 ) ) ↦ ( 𝑓 ‘ ( 𝑣 ∪ { 𝑤 } ) ) ) = ( 𝑢 ∈ ( ( 𝑠 ∖ { 𝑤 } ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) ( 𝑀 − 1 ) ) ↦ ( 𝑓 ‘ ( 𝑢 ∪ { 𝑤 } ) ) ) |
40 |
28 29 30 4 31 32 7 33 34 35 36 39
|
ramub1lem2 |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ∧ 𝑤 ∈ 𝑠 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
41 |
40
|
expr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( 𝑤 ∈ 𝑠 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
42 |
41
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ∃ 𝑤 𝑤 ∈ 𝑠 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ) |
43 |
27 42
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
44 |
7 8 2 11 13 43
|
ramub2 |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ≤ ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |