Step |
Hyp |
Ref |
Expression |
1 |
|
ramub1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
2 |
|
ramub1.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
3 |
|
ramub1.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ ) |
4 |
|
ramub1.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑅 ↦ ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝐹 ‘ 𝑥 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
5 |
|
ramub1.1 |
⊢ ( 𝜑 → 𝐺 : 𝑅 ⟶ ℕ0 ) |
6 |
|
ramub1.2 |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 ) |
7 |
|
ramub1.3 |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
8 |
|
ramub1.4 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
9 |
|
ramub1.5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |
10 |
|
ramub1.6 |
⊢ ( 𝜑 → 𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) |
11 |
|
ramub1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
12 |
|
ramub1.h |
⊢ 𝐻 = ( 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ↦ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) ) |
13 |
|
ramub1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑅 ) |
14 |
|
ramub1.w |
⊢ ( 𝜑 → 𝑊 ⊆ ( 𝑆 ∖ { 𝑋 } ) ) |
15 |
|
ramub1.7 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐷 ) ≤ ( ♯ ‘ 𝑊 ) ) |
16 |
|
ramub1.8 |
⊢ ( 𝜑 → ( 𝑊 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝐷 } ) ) |
17 |
|
ramub1.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑅 ) |
18 |
|
ramub1.v |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑊 ) |
19 |
|
ramub1.9 |
⊢ ( 𝜑 → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) ≤ ( ♯ ‘ 𝑉 ) ) |
20 |
|
ramub1.s |
⊢ ( 𝜑 → ( 𝑉 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) |
21 |
18 14
|
sstrd |
⊢ ( 𝜑 → 𝑉 ⊆ ( 𝑆 ∖ { 𝑋 } ) ) |
22 |
21
|
difss2d |
⊢ ( 𝜑 → 𝑉 ⊆ 𝑆 ) |
23 |
11
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑆 ) |
24 |
22 23
|
unssd |
⊢ ( 𝜑 → ( 𝑉 ∪ { 𝑋 } ) ⊆ 𝑆 ) |
25 |
8 24
|
sselpwd |
⊢ ( 𝜑 → ( 𝑉 ∪ { 𝑋 } ) ∈ 𝒫 𝑆 ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( 𝑉 ∪ { 𝑋 } ) ∈ 𝒫 𝑆 ) |
27 |
|
iftrue |
⊢ ( 𝐸 = 𝐷 → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) = ( ( 𝐹 ‘ 𝐷 ) − 1 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) = ( ( 𝐹 ‘ 𝐷 ) − 1 ) ) |
29 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) ≤ ( ♯ ‘ 𝑉 ) ) |
30 |
28 29
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( ( 𝐹 ‘ 𝐷 ) − 1 ) ≤ ( ♯ ‘ 𝑉 ) ) |
31 |
3 13
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐷 ) ∈ ℕ ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( 𝐹 ‘ 𝐷 ) ∈ ℕ ) |
33 |
32
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( 𝐹 ‘ 𝐷 ) ∈ ℝ ) |
34 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → 1 ∈ ℝ ) |
35 |
8 22
|
ssfid |
⊢ ( 𝜑 → 𝑉 ∈ Fin ) |
36 |
|
hashcl |
⊢ ( 𝑉 ∈ Fin → ( ♯ ‘ 𝑉 ) ∈ ℕ0 ) |
37 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑉 ) ∈ ℕ0 → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
38 |
35 36 37
|
3syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( ♯ ‘ 𝑉 ) ∈ ℝ ) |
40 |
33 34 39
|
lesubaddd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( ( ( 𝐹 ‘ 𝐷 ) − 1 ) ≤ ( ♯ ‘ 𝑉 ) ↔ ( 𝐹 ‘ 𝐷 ) ≤ ( ( ♯ ‘ 𝑉 ) + 1 ) ) ) |
41 |
30 40
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( 𝐹 ‘ 𝐷 ) ≤ ( ( ♯ ‘ 𝑉 ) + 1 ) ) |
42 |
|
fveq2 |
⊢ ( 𝐸 = 𝐷 → ( 𝐹 ‘ 𝐸 ) = ( 𝐹 ‘ 𝐷 ) ) |
43 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ∈ { 𝑋 } ) |
44 |
11 43
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑋 } ) |
45 |
21
|
sseld |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) ) |
46 |
|
eldifn |
⊢ ( 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) → ¬ 𝑋 ∈ { 𝑋 } ) |
47 |
45 46
|
syl6 |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ { 𝑋 } ) ) |
48 |
44 47
|
mt2d |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑉 ) |
49 |
|
hashunsng |
⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝑉 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) = ( ( ♯ ‘ 𝑉 ) + 1 ) ) ) |
50 |
11 49
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) = ( ( ♯ ‘ 𝑉 ) + 1 ) ) ) |
51 |
35 48 50
|
mp2and |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) = ( ( ♯ ‘ 𝑉 ) + 1 ) ) |
52 |
42 51
|
breqan12rd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) ↔ ( 𝐹 ‘ 𝐷 ) ≤ ( ( ♯ ‘ 𝑉 ) + 1 ) ) ) |
53 |
41 52
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) ) |
54 |
|
snfi |
⊢ { 𝑋 } ∈ Fin |
55 |
|
unfi |
⊢ ( ( 𝑉 ∈ Fin ∧ { 𝑋 } ∈ Fin ) → ( 𝑉 ∪ { 𝑋 } ) ∈ Fin ) |
56 |
35 54 55
|
sylancl |
⊢ ( 𝜑 → ( 𝑉 ∪ { 𝑋 } ) ∈ Fin ) |
57 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
58 |
7
|
hashbcval |
⊢ ( ( ( 𝑉 ∪ { 𝑋 } ) ∈ Fin ∧ 𝑀 ∈ ℕ0 ) → ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
59 |
56 57 58
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
61 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ 𝑥 ∈ 𝒫 𝑉 ) → 𝜑 ) |
62 |
7
|
hashbcval |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝑀 ∈ ℕ0 ) → ( 𝑉 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
63 |
35 57 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
64 |
63 20
|
eqsstrrd |
⊢ ( 𝜑 → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) |
65 |
61 64
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ 𝑥 ∈ 𝒫 𝑉 ) → { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) |
66 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ 𝒫 𝑉 ) |
67 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ 𝑥 ) = 𝑀 ) |
68 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ↔ ( 𝑥 ∈ 𝒫 𝑉 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) |
69 |
66 67 68
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
70 |
65 69
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ ( ◡ 𝐾 “ { 𝐸 } ) ) |
71 |
|
simpl2 |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ) |
72 |
71
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ⊆ ( 𝑉 ∪ { 𝑋 } ) ) |
73 |
|
simpl1l |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝜑 ) |
74 |
73 24
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑉 ∪ { 𝑋 } ) ⊆ 𝑆 ) |
75 |
72 74
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ⊆ 𝑆 ) |
76 |
|
vex |
⊢ 𝑥 ∈ V |
77 |
76
|
elpw |
⊢ ( 𝑥 ∈ 𝒫 𝑆 ↔ 𝑥 ⊆ 𝑆 ) |
78 |
75 77
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ 𝒫 𝑆 ) |
79 |
|
simpl3 |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ 𝑥 ) = 𝑀 ) |
80 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ↔ ( 𝑥 ∈ 𝒫 𝑆 ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ) |
81 |
78 79 80
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
82 |
7
|
hashbcval |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0 ) → ( 𝑆 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
83 |
8 57 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
84 |
73 83
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑆 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
85 |
81 84
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ ( 𝑆 𝐶 𝑀 ) ) |
86 |
14
|
difss2d |
⊢ ( 𝜑 → 𝑊 ⊆ 𝑆 ) |
87 |
8 86
|
ssfid |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
88 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
89 |
1 88
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℕ0 ) |
90 |
7
|
hashbcval |
⊢ ( ( 𝑊 ∈ Fin ∧ ( 𝑀 − 1 ) ∈ ℕ0 ) → ( 𝑊 𝐶 ( 𝑀 − 1 ) ) = { 𝑢 ∈ 𝒫 𝑊 ∣ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) } ) |
91 |
87 89 90
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 𝐶 ( 𝑀 − 1 ) ) = { 𝑢 ∈ 𝒫 𝑊 ∣ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) } ) |
92 |
91 16
|
eqsstrrd |
⊢ ( 𝜑 → { 𝑢 ∈ 𝒫 𝑊 ∣ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) } ⊆ ( ◡ 𝐻 “ { 𝐷 } ) ) |
93 |
73 92
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → { 𝑢 ∈ 𝒫 𝑊 ∣ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) } ⊆ ( ◡ 𝐻 “ { 𝐷 } ) ) |
94 |
|
fveqeq2 |
⊢ ( 𝑢 = ( 𝑥 ∖ { 𝑋 } ) → ( ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) ↔ ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) = ( 𝑀 − 1 ) ) ) |
95 |
|
uncom |
⊢ ( 𝑉 ∪ { 𝑋 } ) = ( { 𝑋 } ∪ 𝑉 ) |
96 |
72 95
|
sseqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ⊆ ( { 𝑋 } ∪ 𝑉 ) ) |
97 |
|
ssundif |
⊢ ( 𝑥 ⊆ ( { 𝑋 } ∪ 𝑉 ) ↔ ( 𝑥 ∖ { 𝑋 } ) ⊆ 𝑉 ) |
98 |
96 97
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ⊆ 𝑉 ) |
99 |
73 18
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑉 ⊆ 𝑊 ) |
100 |
98 99
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ⊆ 𝑊 ) |
101 |
76
|
difexi |
⊢ ( 𝑥 ∖ { 𝑋 } ) ∈ V |
102 |
101
|
elpw |
⊢ ( ( 𝑥 ∖ { 𝑋 } ) ∈ 𝒫 𝑊 ↔ ( 𝑥 ∖ { 𝑋 } ) ⊆ 𝑊 ) |
103 |
100 102
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ∈ 𝒫 𝑊 ) |
104 |
73 8
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑆 ∈ Fin ) |
105 |
104 75
|
ssfid |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ Fin ) |
106 |
|
diffi |
⊢ ( 𝑥 ∈ Fin → ( 𝑥 ∖ { 𝑋 } ) ∈ Fin ) |
107 |
105 106
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ∈ Fin ) |
108 |
|
hashcl |
⊢ ( ( 𝑥 ∖ { 𝑋 } ) ∈ Fin → ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ∈ ℕ0 ) |
109 |
|
nn0cn |
⊢ ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ∈ ℕ0 → ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ∈ ℂ ) |
110 |
107 108 109
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ∈ ℂ ) |
111 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
112 |
|
pncan |
⊢ ( ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) − 1 ) = ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ) |
113 |
110 111 112
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) − 1 ) = ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) ) |
114 |
|
neldifsnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ¬ 𝑋 ∈ ( 𝑥 ∖ { 𝑋 } ) ) |
115 |
|
hashunsng |
⊢ ( 𝑋 ∈ 𝑆 → ( ( ( 𝑥 ∖ { 𝑋 } ) ∈ Fin ∧ ¬ 𝑋 ∈ ( 𝑥 ∖ { 𝑋 } ) ) → ( ♯ ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) ) ) |
116 |
73 11 115
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ( ( 𝑥 ∖ { 𝑋 } ) ∈ Fin ∧ ¬ 𝑋 ∈ ( 𝑥 ∖ { 𝑋 } ) ) → ( ♯ ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) ) ) |
117 |
107 114 116
|
mp2and |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) ) |
118 |
|
undif1 |
⊢ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = ( 𝑥 ∪ { 𝑋 } ) |
119 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ¬ 𝑥 ∈ 𝒫 𝑉 ) |
120 |
71 119
|
eldifd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ ( 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∖ 𝒫 𝑉 ) ) |
121 |
|
elpwunsn |
⊢ ( 𝑥 ∈ ( 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∖ 𝒫 𝑉 ) → 𝑋 ∈ 𝑥 ) |
122 |
120 121
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑋 ∈ 𝑥 ) |
123 |
122
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → { 𝑋 } ⊆ 𝑥 ) |
124 |
|
ssequn2 |
⊢ ( { 𝑋 } ⊆ 𝑥 ↔ ( 𝑥 ∪ { 𝑋 } ) = 𝑥 ) |
125 |
123 124
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∪ { 𝑋 } ) = 𝑥 ) |
126 |
118 125
|
eqtr2id |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 = ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) |
127 |
126
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) ) |
128 |
127 79
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = 𝑀 ) |
129 |
117 128
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) = 𝑀 ) |
130 |
129
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ( ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) + 1 ) − 1 ) = ( 𝑀 − 1 ) ) |
131 |
113 130
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ♯ ‘ ( 𝑥 ∖ { 𝑋 } ) ) = ( 𝑀 − 1 ) ) |
132 |
94 103 131
|
elrabd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ∈ { 𝑢 ∈ 𝒫 𝑊 ∣ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) } ) |
133 |
93 132
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ∈ ( ◡ 𝐻 “ { 𝐷 } ) ) |
134 |
12
|
mptiniseg |
⊢ ( 𝐷 ∈ 𝑅 → ( ◡ 𝐻 “ { 𝐷 } ) = { 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ∣ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝐷 } ) |
135 |
73 13 134
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( ◡ 𝐻 “ { 𝐷 } ) = { 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ∣ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝐷 } ) |
136 |
133 135
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∖ { 𝑋 } ) ∈ { 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ∣ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝐷 } ) |
137 |
|
uneq1 |
⊢ ( 𝑢 = ( 𝑥 ∖ { 𝑋 } ) → ( 𝑢 ∪ { 𝑋 } ) = ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) |
138 |
137
|
fveqeq2d |
⊢ ( 𝑢 = ( 𝑥 ∖ { 𝑋 } ) → ( ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝐷 ↔ ( 𝐾 ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = 𝐷 ) ) |
139 |
138
|
elrab |
⊢ ( ( 𝑥 ∖ { 𝑋 } ) ∈ { 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ∣ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝐷 } ↔ ( ( 𝑥 ∖ { 𝑋 } ) ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ∧ ( 𝐾 ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = 𝐷 ) ) |
140 |
139
|
simprbi |
⊢ ( ( 𝑥 ∖ { 𝑋 } ) ∈ { 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ∣ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝐷 } → ( 𝐾 ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = 𝐷 ) |
141 |
136 140
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝐾 ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = 𝐷 ) |
142 |
126
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ ( ( 𝑥 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) ) |
143 |
|
simpl1r |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝐸 = 𝐷 ) |
144 |
141 142 143
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝐾 ‘ 𝑥 ) = 𝐸 ) |
145 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐾 Fn ( 𝑆 𝐶 𝑀 ) ) |
146 |
|
fniniseg |
⊢ ( 𝐾 Fn ( 𝑆 𝐶 𝑀 ) → ( 𝑥 ∈ ( ◡ 𝐾 “ { 𝐸 } ) ↔ ( 𝑥 ∈ ( 𝑆 𝐶 𝑀 ) ∧ ( 𝐾 ‘ 𝑥 ) = 𝐸 ) ) ) |
147 |
73 145 146
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → ( 𝑥 ∈ ( ◡ 𝐾 “ { 𝐸 } ) ↔ ( 𝑥 ∈ ( 𝑆 𝐶 𝑀 ) ∧ ( 𝐾 ‘ 𝑥 ) = 𝐸 ) ) ) |
148 |
85 144 147
|
mpbir2and |
⊢ ( ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) ∧ ¬ 𝑥 ∈ 𝒫 𝑉 ) → 𝑥 ∈ ( ◡ 𝐾 “ { 𝐸 } ) ) |
149 |
70 148
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝐸 = 𝐷 ) ∧ 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∧ ( ♯ ‘ 𝑥 ) = 𝑀 ) → 𝑥 ∈ ( ◡ 𝐾 “ { 𝐸 } ) ) |
150 |
149
|
rabssdv |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → { 𝑥 ∈ 𝒫 ( 𝑉 ∪ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) |
151 |
60 150
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) |
152 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑉 ∪ { 𝑋 } ) → ( ♯ ‘ 𝑧 ) = ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) ) |
153 |
152
|
breq2d |
⊢ ( 𝑧 = ( 𝑉 ∪ { 𝑋 } ) → ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) ) ) |
154 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝑉 ∪ { 𝑋 } ) → ( 𝑧 𝐶 𝑀 ) = ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) ) |
155 |
154
|
sseq1d |
⊢ ( 𝑧 = ( 𝑉 ∪ { 𝑋 } ) → ( ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ↔ ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |
156 |
153 155
|
anbi12d |
⊢ ( 𝑧 = ( 𝑉 ∪ { 𝑋 } ) → ( ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ↔ ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) ∧ ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) ) |
157 |
156
|
rspcev |
⊢ ( ( ( 𝑉 ∪ { 𝑋 } ) ∈ 𝒫 𝑆 ∧ ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ ( 𝑉 ∪ { 𝑋 } ) ) ∧ ( ( 𝑉 ∪ { 𝑋 } ) 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |
158 |
26 53 151 157
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐷 ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |
159 |
8 22
|
sselpwd |
⊢ ( 𝜑 → 𝑉 ∈ 𝒫 𝑆 ) |
160 |
159
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐷 ) → 𝑉 ∈ 𝒫 𝑆 ) |
161 |
|
ifnefalse |
⊢ ( 𝐸 ≠ 𝐷 → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) = ( 𝐹 ‘ 𝐸 ) ) |
162 |
161
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐷 ) → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) = ( 𝐹 ‘ 𝐸 ) ) |
163 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐷 ) → if ( 𝐸 = 𝐷 , ( ( 𝐹 ‘ 𝐷 ) − 1 ) , ( 𝐹 ‘ 𝐸 ) ) ≤ ( ♯ ‘ 𝑉 ) ) |
164 |
162 163
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐷 ) → ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑉 ) ) |
165 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐷 ) → ( 𝑉 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) |
166 |
|
fveq2 |
⊢ ( 𝑧 = 𝑉 → ( ♯ ‘ 𝑧 ) = ( ♯ ‘ 𝑉 ) ) |
167 |
166
|
breq2d |
⊢ ( 𝑧 = 𝑉 → ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑉 ) ) ) |
168 |
|
oveq1 |
⊢ ( 𝑧 = 𝑉 → ( 𝑧 𝐶 𝑀 ) = ( 𝑉 𝐶 𝑀 ) ) |
169 |
168
|
sseq1d |
⊢ ( 𝑧 = 𝑉 → ( ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ↔ ( 𝑉 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |
170 |
167 169
|
anbi12d |
⊢ ( 𝑧 = 𝑉 → ( ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ↔ ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑉 ) ∧ ( 𝑉 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) ) |
171 |
170
|
rspcev |
⊢ ( ( 𝑉 ∈ 𝒫 𝑆 ∧ ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑉 ) ∧ ( 𝑉 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |
172 |
160 164 165 171
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐸 ≠ 𝐷 ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |
173 |
158 172
|
pm2.61dane |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝐸 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝐸 } ) ) ) |