| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramub1.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 2 |
|
ramub1.r |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 3 |
|
ramub1.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ ) |
| 4 |
|
ramub1.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝑅 ↦ ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝐹 ‘ 𝑥 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 5 |
|
ramub1.1 |
⊢ ( 𝜑 → 𝐺 : 𝑅 ⟶ ℕ0 ) |
| 6 |
|
ramub1.2 |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 ) |
| 7 |
|
ramub1.3 |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
| 8 |
|
ramub1.4 |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 9 |
|
ramub1.5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑆 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |
| 10 |
|
ramub1.6 |
⊢ ( 𝜑 → 𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 11 |
|
ramub1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 12 |
|
ramub1.h |
⊢ 𝐻 = ( 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ↦ ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) ) |
| 13 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 15 |
|
diffi |
⊢ ( 𝑆 ∈ Fin → ( 𝑆 ∖ { 𝑋 } ) ∈ Fin ) |
| 16 |
8 15
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∖ { 𝑋 } ) ∈ Fin ) |
| 17 |
6
|
nn0red |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℝ ) |
| 18 |
17
|
leidd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ≤ ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ) |
| 19 |
|
hashcl |
⊢ ( ( 𝑆 ∖ { 𝑋 } ) ∈ Fin → ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) ∈ ℕ0 ) |
| 20 |
16 19
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) ∈ ℕ0 ) |
| 21 |
20
|
nn0cnd |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) ∈ ℂ ) |
| 22 |
6
|
nn0cnd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℂ ) |
| 23 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 24 |
|
undif1 |
⊢ ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = ( 𝑆 ∪ { 𝑋 } ) |
| 25 |
11
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑆 ) |
| 26 |
|
ssequn2 |
⊢ ( { 𝑋 } ⊆ 𝑆 ↔ ( 𝑆 ∪ { 𝑋 } ) = 𝑆 ) |
| 27 |
25 26
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∪ { 𝑋 } ) = 𝑆 ) |
| 28 |
24 27
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) = 𝑆 ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ♯ ‘ 𝑆 ) ) |
| 30 |
|
neldifsnd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) |
| 31 |
|
hashunsng |
⊢ ( 𝑋 ∈ 𝑆 → ( ( ( 𝑆 ∖ { 𝑋 } ) ∈ Fin ∧ ¬ 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ♯ ‘ ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) + 1 ) ) ) |
| 32 |
11 31
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑆 ∖ { 𝑋 } ) ∈ Fin ∧ ¬ 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) → ( ♯ ‘ ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) + 1 ) ) ) |
| 33 |
16 30 32
|
mp2and |
⊢ ( 𝜑 → ( ♯ ‘ ( ( 𝑆 ∖ { 𝑋 } ) ∪ { 𝑋 } ) ) = ( ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) + 1 ) ) |
| 34 |
29 33 9
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) + 1 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |
| 35 |
21 22 23 34
|
addcan2ad |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) = ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ) |
| 36 |
18 35
|
breqtrrd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ≤ ( ♯ ‘ ( 𝑆 ∖ { 𝑋 } ) ) ) |
| 37 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → 𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 38 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝑢 ∪ { 𝑋 } ) → ( ( ♯ ‘ 𝑥 ) = 𝑀 ↔ ( ♯ ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝑀 ) ) |
| 39 |
7
|
hashbcval |
⊢ ( ( ( 𝑆 ∖ { 𝑋 } ) ∈ Fin ∧ ( 𝑀 − 1 ) ∈ ℕ0 ) → ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) = { 𝑥 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = ( 𝑀 − 1 ) } ) |
| 40 |
16 14 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) = { 𝑥 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = ( 𝑀 − 1 ) } ) |
| 41 |
40
|
eleq2d |
⊢ ( 𝜑 → ( 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ↔ 𝑢 ∈ { 𝑥 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = ( 𝑀 − 1 ) } ) ) |
| 42 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑢 → ( ( ♯ ‘ 𝑥 ) = ( 𝑀 − 1 ) ↔ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) ) ) |
| 43 |
42
|
elrab |
⊢ ( 𝑢 ∈ { 𝑥 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ∣ ( ♯ ‘ 𝑥 ) = ( 𝑀 − 1 ) } ↔ ( 𝑢 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) ) ) |
| 44 |
41 43
|
bitrdi |
⊢ ( 𝜑 → ( 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ↔ ( 𝑢 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ∧ ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) ) ) ) |
| 45 |
44
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → 𝑢 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) |
| 46 |
45
|
elpwid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → 𝑢 ⊆ ( 𝑆 ∖ { 𝑋 } ) ) |
| 47 |
46
|
difss2d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → 𝑢 ⊆ 𝑆 ) |
| 48 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → { 𝑋 } ⊆ 𝑆 ) |
| 49 |
47 48
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝑢 ∪ { 𝑋 } ) ⊆ 𝑆 ) |
| 50 |
|
vex |
⊢ 𝑢 ∈ V |
| 51 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 52 |
50 51
|
unex |
⊢ ( 𝑢 ∪ { 𝑋 } ) ∈ V |
| 53 |
52
|
elpw |
⊢ ( ( 𝑢 ∪ { 𝑋 } ) ∈ 𝒫 𝑆 ↔ ( 𝑢 ∪ { 𝑋 } ) ⊆ 𝑆 ) |
| 54 |
49 53
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝑢 ∪ { 𝑋 } ) ∈ 𝒫 𝑆 ) |
| 55 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝑆 ∖ { 𝑋 } ) ∈ Fin ) |
| 56 |
55 46
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → 𝑢 ∈ Fin ) |
| 57 |
|
neldifsnd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ¬ 𝑋 ∈ ( 𝑆 ∖ { 𝑋 } ) ) |
| 58 |
46 57
|
ssneldd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ¬ 𝑋 ∈ 𝑢 ) |
| 59 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → 𝑋 ∈ 𝑆 ) |
| 60 |
|
hashunsng |
⊢ ( 𝑋 ∈ 𝑆 → ( ( 𝑢 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑢 ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑋 } ) ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( ( 𝑢 ∈ Fin ∧ ¬ 𝑋 ∈ 𝑢 ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑋 } ) ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) ) |
| 62 |
56 58 61
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑋 } ) ) = ( ( ♯ ‘ 𝑢 ) + 1 ) ) |
| 63 |
44
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( ♯ ‘ 𝑢 ) = ( 𝑀 − 1 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( ( ♯ ‘ 𝑢 ) + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 65 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 66 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 67 |
|
npcan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 68 |
65 66 67
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 70 |
62 64 69
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( ♯ ‘ ( 𝑢 ∪ { 𝑋 } ) ) = 𝑀 ) |
| 71 |
38 54 70
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝑢 ∪ { 𝑋 } ) ∈ { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
| 72 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 73 |
7
|
hashbcval |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ ℕ0 ) → ( 𝑆 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
| 74 |
8 72 73
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝑆 𝐶 𝑀 ) = { 𝑥 ∈ 𝒫 𝑆 ∣ ( ♯ ‘ 𝑥 ) = 𝑀 } ) |
| 76 |
71 75
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝑢 ∪ { 𝑋 } ) ∈ ( 𝑆 𝐶 𝑀 ) ) |
| 77 |
37 76
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ) → ( 𝐾 ‘ ( 𝑢 ∪ { 𝑋 } ) ) ∈ 𝑅 ) |
| 78 |
77 12
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ( ( 𝑆 ∖ { 𝑋 } ) 𝐶 ( 𝑀 − 1 ) ) ⟶ 𝑅 ) |
| 79 |
7 14 2 5 6 16 36 78
|
rami |
⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝑅 ∃ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) |
| 80 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑀 ∈ ℕ0 ) |
| 81 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑅 ∈ Fin ) |
| 82 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝐹 : 𝑅 ⟶ ℕ ) |
| 83 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑑 ∈ 𝑅 ) |
| 84 |
82 83
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝐹 ‘ 𝑑 ) ∈ ℕ ) |
| 85 |
|
nnm1nn0 |
⊢ ( ( 𝐹 ‘ 𝑑 ) ∈ ℕ → ( ( 𝐹 ‘ 𝑑 ) − 1 ) ∈ ℕ0 ) |
| 86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( ( 𝐹 ‘ 𝑑 ) − 1 ) ∈ ℕ0 ) |
| 87 |
86
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ 𝑦 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑑 ) − 1 ) ∈ ℕ0 ) |
| 88 |
82
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ 𝑦 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ ) |
| 89 |
88
|
nnnn0d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ 𝑦 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 90 |
87 89
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ 𝑦 ∈ 𝑅 ) → if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 91 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) |
| 92 |
90 91
|
fmptd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) : 𝑅 ⟶ ℕ0 ) |
| 93 |
|
equequ2 |
⊢ ( 𝑥 = 𝑑 → ( 𝑦 = 𝑥 ↔ 𝑦 = 𝑑 ) ) |
| 94 |
|
fveq2 |
⊢ ( 𝑥 = 𝑑 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 95 |
94
|
oveq1d |
⊢ ( 𝑥 = 𝑑 → ( ( 𝐹 ‘ 𝑥 ) − 1 ) = ( ( 𝐹 ‘ 𝑑 ) − 1 ) ) |
| 96 |
93 95
|
ifbieq1d |
⊢ ( 𝑥 = 𝑑 → if ( 𝑦 = 𝑥 , ( ( 𝐹 ‘ 𝑥 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) = if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) |
| 97 |
96
|
mpteq2dv |
⊢ ( 𝑥 = 𝑑 → ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝐹 ‘ 𝑥 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 98 |
97
|
oveq2d |
⊢ ( 𝑥 = 𝑑 → ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑥 , ( ( 𝐹 ‘ 𝑥 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) = ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 99 |
|
ovex |
⊢ ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ V |
| 100 |
98 4 99
|
fvmpt |
⊢ ( 𝑑 ∈ 𝑅 → ( 𝐺 ‘ 𝑑 ) = ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 101 |
83 100
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝐺 ‘ 𝑑 ) = ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 102 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝐺 : 𝑅 ⟶ ℕ0 ) |
| 103 |
102 83
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝐺 ‘ 𝑑 ) ∈ ℕ0 ) |
| 104 |
101 103
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ∈ ℕ0 ) |
| 105 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) |
| 106 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ) |
| 107 |
101 106
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝑀 Ramsey ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ) ≤ ( ♯ ‘ 𝑤 ) ) |
| 108 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 109 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑆 ∈ Fin ) |
| 110 |
105
|
elpwid |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑤 ⊆ ( 𝑆 ∖ { 𝑋 } ) ) |
| 111 |
110
|
difss2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → 𝑤 ⊆ 𝑆 ) |
| 112 |
7
|
hashbcss |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑤 ⊆ 𝑆 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑤 𝐶 𝑀 ) ⊆ ( 𝑆 𝐶 𝑀 ) ) |
| 113 |
109 111 80 112
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝑤 𝐶 𝑀 ) ⊆ ( 𝑆 𝐶 𝑀 ) ) |
| 114 |
108 113
|
fssresd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) : ( 𝑤 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 115 |
7 80 81 92 104 105 107 114
|
rami |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑣 ∈ 𝒫 𝑤 ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) |
| 116 |
|
equequ1 |
⊢ ( 𝑦 = 𝑐 → ( 𝑦 = 𝑑 ↔ 𝑐 = 𝑑 ) ) |
| 117 |
|
fveq2 |
⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑐 ) ) |
| 118 |
116 117
|
ifbieq2d |
⊢ ( 𝑦 = 𝑐 → if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) = if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ) |
| 119 |
|
ovex |
⊢ ( ( 𝐹 ‘ 𝑑 ) − 1 ) ∈ V |
| 120 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑐 ) ∈ V |
| 121 |
119 120
|
ifex |
⊢ if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ∈ V |
| 122 |
118 91 121
|
fvmpt |
⊢ ( 𝑐 ∈ 𝑅 → ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) = if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ) |
| 123 |
122
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ) → ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) = if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ) |
| 124 |
123
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ) → ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ↔ if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ) ) |
| 125 |
124
|
anbi1d |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ) → ( ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ↔ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) |
| 126 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑀 ∈ ℕ ) |
| 127 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑅 ∈ Fin ) |
| 128 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝐹 : 𝑅 ⟶ ℕ ) |
| 129 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝐺 : 𝑅 ⟶ ℕ0 ) |
| 130 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ( ( 𝑀 − 1 ) Ramsey 𝐺 ) ∈ ℕ0 ) |
| 131 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑆 ∈ Fin ) |
| 132 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ( ♯ ‘ 𝑆 ) = ( ( ( 𝑀 − 1 ) Ramsey 𝐺 ) + 1 ) ) |
| 133 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝐾 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 134 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑋 ∈ 𝑆 ) |
| 135 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑑 ∈ 𝑅 ) |
| 136 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑤 ⊆ ( 𝑆 ∖ { 𝑋 } ) ) |
| 137 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ) |
| 138 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) |
| 139 |
138
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) |
| 140 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑐 ∈ 𝑅 ) |
| 141 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑣 ∈ 𝒫 𝑤 ) |
| 142 |
141
|
elpwid |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → 𝑣 ⊆ 𝑤 ) |
| 143 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ) |
| 144 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) |
| 145 |
|
cnvresima |
⊢ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) = ( ( ◡ 𝐾 “ { 𝑐 } ) ∩ ( 𝑤 𝐶 𝑀 ) ) |
| 146 |
|
inss1 |
⊢ ( ( ◡ 𝐾 “ { 𝑐 } ) ∩ ( 𝑤 𝐶 𝑀 ) ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) |
| 147 |
145 146
|
eqsstri |
⊢ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) |
| 148 |
144 147
|
sstrdi |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) |
| 149 |
126 127 128 4 129 130 7 131 132 133 134 12 135 136 137 139 140 142 143 148
|
ramub1lem1 |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ∧ ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) |
| 150 |
149
|
expr |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ) → ( ( if ( 𝑐 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑐 ) ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 151 |
125 150
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ ( 𝑐 ∈ 𝑅 ∧ 𝑣 ∈ 𝒫 𝑤 ) ) → ( ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 152 |
151
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ 𝑐 ∈ 𝑅 ) ∧ 𝑣 ∈ 𝒫 𝑤 ) → ( ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 153 |
152
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) ∧ 𝑐 ∈ 𝑅 ) → ( ∃ 𝑣 ∈ 𝒫 𝑤 ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) → ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 154 |
153
|
reximdva |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑣 ∈ 𝒫 𝑤 ( ( ( 𝑦 ∈ 𝑅 ↦ if ( 𝑦 = 𝑑 , ( ( 𝐹 ‘ 𝑑 ) − 1 ) , ( 𝐹 ‘ 𝑦 ) ) ) ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑣 ) ∧ ( 𝑣 𝐶 𝑀 ) ⊆ ( ◡ ( 𝐾 ↾ ( 𝑤 𝐶 𝑀 ) ) “ { 𝑐 } ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 155 |
115 154
|
mpd |
⊢ ( ( 𝜑 ∧ ( ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ∧ ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) |
| 156 |
155
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ) ) → ( ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 157 |
156
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑑 ∈ 𝑅 ∃ 𝑤 ∈ 𝒫 ( 𝑆 ∖ { 𝑋 } ) ( ( 𝐺 ‘ 𝑑 ) ≤ ( ♯ ‘ 𝑤 ) ∧ ( 𝑤 𝐶 ( 𝑀 − 1 ) ) ⊆ ( ◡ 𝐻 “ { 𝑑 } ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) ) |
| 158 |
79 157
|
mpd |
⊢ ( 𝜑 → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑆 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 𝐶 𝑀 ) ⊆ ( ◡ 𝐾 “ { 𝑐 } ) ) ) |