| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rami.c |
⊢ 𝐶 = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
| 2 |
|
rami.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 3 |
|
rami.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑉 ) |
| 4 |
|
rami.f |
⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ ℕ0 ) |
| 5 |
|
ramub2.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 6 |
|
ramub2.i |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
| 7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → 𝑁 ∈ ℕ0 ) |
| 8 |
|
hashfz1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → 𝑁 ≤ ( ♯ ‘ 𝑡 ) ) |
| 11 |
9 10
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ( ♯ ‘ ( 1 ... 𝑁 ) ) ≤ ( ♯ ‘ 𝑡 ) ) |
| 12 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
| 13 |
|
vex |
⊢ 𝑡 ∈ V |
| 14 |
|
hashdom |
⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑡 ∈ V ) → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) ≤ ( ♯ ‘ 𝑡 ) ↔ ( 1 ... 𝑁 ) ≼ 𝑡 ) ) |
| 15 |
12 13 14
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) ≤ ( ♯ ‘ 𝑡 ) ↔ ( 1 ... 𝑁 ) ≼ 𝑡 ) ) |
| 16 |
11 15
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ( 1 ... 𝑁 ) ≼ 𝑡 ) |
| 17 |
13
|
domen |
⊢ ( ( 1 ... 𝑁 ) ≼ 𝑡 ↔ ∃ 𝑠 ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) |
| 18 |
16 17
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑠 ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) |
| 19 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → 𝜑 ) |
| 20 |
|
ensym |
⊢ ( ( 1 ... 𝑁 ) ≈ 𝑠 → 𝑠 ≈ ( 1 ... 𝑁 ) ) |
| 21 |
20
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → 𝑠 ≈ ( 1 ... 𝑁 ) ) |
| 22 |
|
hasheni |
⊢ ( 𝑠 ≈ ( 1 ... 𝑁 ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ♯ ‘ 𝑠 ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
| 24 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → 𝑁 ∈ ℕ0 ) |
| 25 |
24 8
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 26 |
23 25
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ♯ ‘ 𝑠 ) = 𝑁 ) |
| 27 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 28 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → 𝑠 ⊆ 𝑡 ) |
| 29 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → 𝑀 ∈ ℕ0 ) |
| 30 |
1
|
hashbcss |
⊢ ( ( 𝑡 ∈ V ∧ 𝑠 ⊆ 𝑡 ∧ 𝑀 ∈ ℕ0 ) → ( 𝑠 𝐶 𝑀 ) ⊆ ( 𝑡 𝐶 𝑀 ) ) |
| 31 |
13 28 29 30
|
mp3an2i |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( 𝑠 𝐶 𝑀 ) ⊆ ( 𝑡 𝐶 𝑀 ) ) |
| 32 |
27 31
|
fssresd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) |
| 33 |
|
vex |
⊢ 𝑔 ∈ V |
| 34 |
33
|
resex |
⊢ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) ∈ V |
| 35 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ↔ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) |
| 36 |
35
|
anbi2d |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ↔ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) ) |
| 37 |
36
|
anbi2d |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) ↔ ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) ) ) |
| 38 |
|
cnveq |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ◡ 𝑓 = ◡ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) ) |
| 39 |
38
|
imaeq1d |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) “ { 𝑐 } ) ) |
| 40 |
|
cnvresima |
⊢ ( ◡ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) “ { 𝑐 } ) = ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) |
| 41 |
39 40
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ◡ 𝑓 “ { 𝑐 } ) = ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) |
| 42 |
41
|
sseq2d |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) |
| 43 |
42
|
anbi2d |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) ) |
| 44 |
43
|
2rexbidv |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) ) |
| 45 |
37 44
|
imbi12d |
⊢ ( 𝑓 = ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) → ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) ↔ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) ) ) |
| 46 |
34 45 6
|
vtocl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑠 ) = 𝑁 ∧ ( 𝑔 ↾ ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) |
| 47 |
19 26 32 46
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) |
| 48 |
|
sstr |
⊢ ( ( 𝑥 ⊆ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) → 𝑥 ⊆ 𝑡 ) |
| 49 |
48
|
expcom |
⊢ ( 𝑠 ⊆ 𝑡 → ( 𝑥 ⊆ 𝑠 → 𝑥 ⊆ 𝑡 ) ) |
| 50 |
49
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( 𝑥 ⊆ 𝑠 → 𝑥 ⊆ 𝑡 ) ) |
| 51 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑠 ↔ 𝑥 ⊆ 𝑠 ) |
| 52 |
|
velpw |
⊢ ( 𝑥 ∈ 𝒫 𝑡 ↔ 𝑥 ⊆ 𝑡 ) |
| 53 |
50 51 52
|
3imtr4g |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( 𝑥 ∈ 𝒫 𝑠 → 𝑥 ∈ 𝒫 𝑡 ) ) |
| 54 |
|
id |
⊢ ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) → ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) |
| 55 |
|
inss1 |
⊢ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) |
| 56 |
54 55
|
sstrdi |
⊢ ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) → ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) |
| 57 |
56
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) → ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) |
| 58 |
57
|
anim2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) ) |
| 59 |
53 58
|
anim12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ( 𝑥 ∈ 𝒫 𝑠 ∧ ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) ) → ( 𝑥 ∈ 𝒫 𝑡 ∧ ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) ) ) |
| 60 |
59
|
reximdv2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) → ∃ 𝑥 ∈ 𝒫 𝑡 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) ) |
| 61 |
60
|
reximdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ( ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ( ◡ 𝑔 “ { 𝑐 } ) ∩ ( 𝑠 𝐶 𝑀 ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑡 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) ) |
| 62 |
47 61
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) ∧ ( ( 1 ... 𝑁 ) ≈ 𝑠 ∧ 𝑠 ⊆ 𝑡 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑡 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) |
| 63 |
18 62
|
exlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑡 ) ∧ 𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑡 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 𝐶 𝑀 ) ⊆ ( ◡ 𝑔 “ { 𝑐 } ) ) ) |
| 64 |
1 2 3 4 5 63
|
ramub |
⊢ ( 𝜑 → ( 𝑀 Ramsey 𝐹 ) ≤ 𝑁 ) |