| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 2 |
|
ltpnf |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < +∞ ) |
| 3 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 5 |
|
xrltnle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴 ) ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴 ) ) |
| 7 |
2 6
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴 ) |
| 8 |
1 7
|
syl |
⊢ ( 𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴 ) |
| 9 |
8
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ¬ +∞ ≤ 𝐴 ) |
| 10 |
|
simprr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) |
| 11 |
|
breq1 |
⊢ ( ( 𝑀 Ramsey 𝐹 ) = +∞ → ( ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ↔ +∞ ≤ 𝐴 ) ) |
| 12 |
10 11
|
syl5ibcom |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( ( 𝑀 Ramsey 𝐹 ) = +∞ → +∞ ≤ 𝐴 ) ) |
| 13 |
9 12
|
mtod |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ¬ ( 𝑀 Ramsey 𝐹 ) = +∞ ) |
| 14 |
|
elsni |
⊢ ( ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } → ( 𝑀 Ramsey 𝐹 ) = +∞ ) |
| 15 |
13 14
|
nsyl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ¬ ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) |
| 16 |
|
ramcl2 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) ) |
| 18 |
|
elun |
⊢ ( ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ∨ ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) ) |
| 19 |
17 18
|
sylib |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ∨ ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) ) |
| 20 |
19
|
ord |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( ¬ ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 → ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) ) |
| 21 |
15 20
|
mt3d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |