Metamath Proof Explorer


Theorem ramxrcl

Description: The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl .) (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramxrcl ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 nn0ssre 0 ⊆ ℝ
2 ressxr ℝ ⊆ ℝ*
3 1 2 sstri 0 ⊆ ℝ*
4 pnfxr +∞ ∈ ℝ*
5 snssi ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* )
6 4 5 ax-mp { +∞ } ⊆ ℝ*
7 3 6 unssi ( ℕ0 ∪ { +∞ } ) ⊆ ℝ*
8 ramcl2 ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )
9 7 8 sselid ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* )