Database
ELEMENTARY NUMBER THEORY
Elementary prime number theory
Ramsey's theorem
ramxrcl
Metamath Proof Explorer
Description: The Ramsey number is an extended real number. (This theorem does not
imply Ramsey's theorem, unlike ramcl .) (Contributed by Mario Carneiro , 20-Apr-2015)
Ref
Expression
Assertion
ramxrcl
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* )
Proof
Step
Hyp
Ref
Expression
1
nn0ssre
⊢ ℕ0 ⊆ ℝ
2
ressxr
⊢ ℝ ⊆ ℝ*
3
1 2
sstri
⊢ ℕ0 ⊆ ℝ*
4
pnfxr
⊢ +∞ ∈ ℝ*
5
snssi
⊢ ( +∞ ∈ ℝ* → { +∞ } ⊆ ℝ* )
6
4 5
ax-mp
⊢ { +∞ } ⊆ ℝ*
7
3 6
unssi
⊢ ( ℕ0 ∪ { +∞ } ) ⊆ ℝ*
8
ramcl2
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )
9
7 8
sselid
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℝ* )