Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
2 |
|
n0 |
⊢ ( 𝑅 ≠ ∅ ↔ ∃ 𝑐 𝑐 ∈ 𝑅 ) |
3 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑅 ) → 𝑀 ∈ ℕ ) |
4 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑅 ) → 𝑅 ∈ 𝑉 ) |
5 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
6 |
5
|
fconst6 |
⊢ ( 𝑅 × { 0 } ) : 𝑅 ⟶ ℕ0 |
7 |
6
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑅 ) → ( 𝑅 × { 0 } ) : 𝑅 ⟶ ℕ0 ) |
8 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑅 ) → 𝑐 ∈ 𝑅 ) |
9 |
|
fvconst2g |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝑅 × { 0 } ) ‘ 𝑐 ) = 0 ) |
10 |
5 8 9
|
sylancr |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝑅 × { 0 } ) ‘ 𝑐 ) = 0 ) |
11 |
|
ramz2 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ ( 𝑅 × { 0 } ) : 𝑅 ⟶ ℕ0 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( ( 𝑅 × { 0 } ) ‘ 𝑐 ) = 0 ) ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) |
12 |
3 4 7 8 10 11
|
syl32anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) ∧ 𝑐 ∈ 𝑅 ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) |
13 |
12
|
ex |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑐 ∈ 𝑅 → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
14 |
13
|
exlimdv |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( ∃ 𝑐 𝑐 ∈ 𝑅 → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
15 |
2 14
|
syl5bi |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ) → ( 𝑅 ≠ ∅ → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
16 |
15
|
expimpd |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
17 |
|
simpl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → 𝑅 ∈ 𝑉 ) |
18 |
|
simpr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → 𝑅 ≠ ∅ ) |
19 |
6
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 𝑅 × { 0 } ) : 𝑅 ⟶ ℕ0 ) |
20 |
|
0z |
⊢ 0 ∈ ℤ |
21 |
|
elsni |
⊢ ( 𝑦 ∈ { 0 } → 𝑦 = 0 ) |
22 |
|
0le0 |
⊢ 0 ≤ 0 |
23 |
21 22
|
eqbrtrdi |
⊢ ( 𝑦 ∈ { 0 } → 𝑦 ≤ 0 ) |
24 |
23
|
rgen |
⊢ ∀ 𝑦 ∈ { 0 } 𝑦 ≤ 0 |
25 |
|
rnxp |
⊢ ( 𝑅 ≠ ∅ → ran ( 𝑅 × { 0 } ) = { 0 } ) |
26 |
25
|
adantl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ran ( 𝑅 × { 0 } ) = { 0 } ) |
27 |
26
|
raleqdv |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( ∀ 𝑦 ∈ ran ( 𝑅 × { 0 } ) 𝑦 ≤ 0 ↔ ∀ 𝑦 ∈ { 0 } 𝑦 ≤ 0 ) ) |
28 |
24 27
|
mpbiri |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ∀ 𝑦 ∈ ran ( 𝑅 × { 0 } ) 𝑦 ≤ 0 ) |
29 |
|
brralrspcev |
⊢ ( ( 0 ∈ ℤ ∧ ∀ 𝑦 ∈ ran ( 𝑅 × { 0 } ) 𝑦 ≤ 0 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran ( 𝑅 × { 0 } ) 𝑦 ≤ 𝑥 ) |
30 |
20 28 29
|
sylancr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran ( 𝑅 × { 0 } ) 𝑦 ≤ 𝑥 ) |
31 |
|
0ram |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ ( 𝑅 × { 0 } ) : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran ( 𝑅 × { 0 } ) 𝑦 ≤ 𝑥 ) → ( 0 Ramsey ( 𝑅 × { 0 } ) ) = sup ( ran ( 𝑅 × { 0 } ) , ℝ , < ) ) |
32 |
17 18 19 30 31
|
syl31anc |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 0 Ramsey ( 𝑅 × { 0 } ) ) = sup ( ran ( 𝑅 × { 0 } ) , ℝ , < ) ) |
33 |
26
|
supeq1d |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → sup ( ran ( 𝑅 × { 0 } ) , ℝ , < ) = sup ( { 0 } , ℝ , < ) ) |
34 |
|
ltso |
⊢ < Or ℝ |
35 |
|
0re |
⊢ 0 ∈ ℝ |
36 |
|
supsn |
⊢ ( ( < Or ℝ ∧ 0 ∈ ℝ ) → sup ( { 0 } , ℝ , < ) = 0 ) |
37 |
34 35 36
|
mp2an |
⊢ sup ( { 0 } , ℝ , < ) = 0 |
38 |
37
|
a1i |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → sup ( { 0 } , ℝ , < ) = 0 ) |
39 |
32 33 38
|
3eqtrd |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 0 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) |
40 |
|
oveq1 |
⊢ ( 𝑀 = 0 → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = ( 0 Ramsey ( 𝑅 × { 0 } ) ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑀 = 0 → ( ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ↔ ( 0 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
42 |
39 41
|
syl5ibr |
⊢ ( 𝑀 = 0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
43 |
16 42
|
jaoi |
⊢ ( ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) → ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
44 |
1 43
|
sylbi |
⊢ ( 𝑀 ∈ ℕ0 → ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) ) |
45 |
44
|
3impib |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ) → ( 𝑀 Ramsey ( 𝑅 × { 0 } ) ) = 0 ) |