Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
2 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → 𝑀 ∈ ℕ ) |
3 |
2
|
nnnn0d |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → 𝑀 ∈ ℕ0 ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → 𝑅 ∈ 𝑉 ) |
5 |
|
simpl3 |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
7 |
6
|
a1i |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → 0 ∈ ℕ0 ) |
8 |
|
simplrl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → 𝐶 ∈ 𝑅 ) |
9 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑠 |
10 |
9
|
a1i |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ∅ ∈ 𝒫 𝑠 ) |
11 |
|
simplrr |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) = 0 ) |
12 |
|
0le0 |
⊢ 0 ≤ 0 |
13 |
11 12
|
eqbrtrdi |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) ≤ 0 ) |
14 |
|
simpll1 |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → 𝑀 ∈ ℕ ) |
15 |
1
|
0hashbc |
⊢ ( 𝑀 ∈ ℕ → ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) |
16 |
14 15
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ∅ ) |
17 |
|
0ss |
⊢ ∅ ⊆ ( ◡ 𝑓 “ { 𝐶 } ) |
18 |
16 17
|
eqsstrdi |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) |
19 |
|
fveq2 |
⊢ ( 𝑐 = 𝐶 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝐶 ) ) |
20 |
19
|
breq1d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝐶 ) ≤ ( ♯ ‘ 𝑥 ) ) ) |
21 |
|
sneq |
⊢ ( 𝑐 = 𝐶 → { 𝑐 } = { 𝐶 } ) |
22 |
21
|
imaeq2d |
⊢ ( 𝑐 = 𝐶 → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ 𝑓 “ { 𝐶 } ) ) |
23 |
22
|
sseq2d |
⊢ ( 𝑐 = 𝐶 → ( ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) ) |
24 |
20 23
|
anbi12d |
⊢ ( 𝑐 = 𝐶 → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ( ( 𝐹 ‘ 𝐶 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) ) ) |
25 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) |
26 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
27 |
25 26
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
28 |
27
|
breq2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐹 ‘ 𝐶 ) ≤ ( ♯ ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝐶 ) ≤ 0 ) ) |
29 |
|
oveq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) = ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ) |
30 |
29
|
sseq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ↔ ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) ) |
31 |
28 30
|
anbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐹 ‘ 𝐶 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) ↔ ( ( 𝐹 ‘ 𝐶 ) ≤ 0 ∧ ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) ) ) |
32 |
24 31
|
rspc2ev |
⊢ ( ( 𝐶 ∈ 𝑅 ∧ ∅ ∈ 𝒫 𝑠 ∧ ( ( 𝐹 ‘ 𝐶 ) ≤ 0 ∧ ( ∅ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝐶 } ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
33 |
8 10 13 18 32
|
syl112anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) ∧ ( 0 ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑥 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑥 ) ∧ ( 𝑥 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 𝑀 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
34 |
1 3 4 5 7 33
|
ramub |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → ( 𝑀 Ramsey 𝐹 ) ≤ 0 ) |
35 |
|
ramubcl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 0 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 0 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |
36 |
3 4 5 7 34 35
|
syl32anc |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ) |
37 |
|
nn0le0eq0 |
⊢ ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 → ( ( 𝑀 Ramsey 𝐹 ) ≤ 0 ↔ ( 𝑀 Ramsey 𝐹 ) = 0 ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → ( ( 𝑀 Ramsey 𝐹 ) ≤ 0 ↔ ( 𝑀 Ramsey 𝐹 ) = 0 ) ) |
39 |
34 38
|
mpbid |
⊢ ( ( ( 𝑀 ∈ ℕ ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐶 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝐶 ) = 0 ) ) → ( 𝑀 Ramsey 𝐹 ) = 0 ) |