| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } )  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } )  | 
						
						
							| 2 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 3 | 
							
								2
							 | 
							nnnn0d | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  𝑀  ∈  ℕ0 )  | 
						
						
							| 4 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  𝑅  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  𝐹 : 𝑅 ⟶ ℕ0 )  | 
						
						
							| 6 | 
							
								
							 | 
							0nn0 | 
							⊢ 0  ∈  ℕ0  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  0  ∈  ℕ0 )  | 
						
						
							| 8 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  𝐶  ∈  𝑅 )  | 
						
						
							| 9 | 
							
								
							 | 
							0elpw | 
							⊢ ∅  ∈  𝒫  𝑠  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  ∅  ∈  𝒫  𝑠 )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  ( 𝐹 ‘ 𝐶 )  =  0 )  | 
						
						
							| 12 | 
							
								
							 | 
							0le0 | 
							⊢ 0  ≤  0  | 
						
						
							| 13 | 
							
								11 12
							 | 
							eqbrtrdi | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  ( 𝐹 ‘ 𝐶 )  ≤  0 )  | 
						
						
							| 14 | 
							
								
							 | 
							simpll1 | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  𝑀  ∈  ℕ )  | 
						
						
							| 15 | 
							
								1
							 | 
							0hashbc | 
							⊢ ( 𝑀  ∈  ℕ  →  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  =  ∅ )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  =  ∅ )  | 
						
						
							| 17 | 
							
								
							 | 
							0ss | 
							⊢ ∅  ⊆  ( ◡ 𝑓  “  { 𝐶 } )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eqsstrdi | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑐  =  𝐶  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ 𝐶 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							breq1d | 
							⊢ ( 𝑐  =  𝐶  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝐶 )  ≤  ( ♯ ‘ 𝑥 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝑐  =  𝐶  →  { 𝑐 }  =  { 𝐶 } )  | 
						
						
							| 22 | 
							
								21
							 | 
							imaeq2d | 
							⊢ ( 𝑐  =  𝐶  →  ( ◡ 𝑓  “  { 𝑐 } )  =  ( ◡ 𝑓  “  { 𝐶 } ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							sseq2d | 
							⊢ ( 𝑐  =  𝐶  →  ( ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } )  ↔  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							anbi12d | 
							⊢ ( 𝑐  =  𝐶  →  ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ( ( 𝐹 ‘ 𝐶 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ ∅ ) )  | 
						
						
							| 26 | 
							
								
							 | 
							hash0 | 
							⊢ ( ♯ ‘ ∅ )  =  0  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eqtrdi | 
							⊢ ( 𝑥  =  ∅  →  ( ♯ ‘ 𝑥 )  =  0 )  | 
						
						
							| 28 | 
							
								27
							 | 
							breq2d | 
							⊢ ( 𝑥  =  ∅  →  ( ( 𝐹 ‘ 𝐶 )  ≤  ( ♯ ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝐶 )  ≤  0 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑥  =  ∅  →  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  =  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							sseq1d | 
							⊢ ( 𝑥  =  ∅  →  ( ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } )  ↔  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  ∅  →  ( ( ( 𝐹 ‘ 𝐶 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) )  ↔  ( ( 𝐹 ‘ 𝐶 )  ≤  0  ∧  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) ) ) )  | 
						
						
							| 32 | 
							
								24 31
							 | 
							rspc2ev | 
							⊢ ( ( 𝐶  ∈  𝑅  ∧  ∅  ∈  𝒫  𝑠  ∧  ( ( 𝐹 ‘ 𝐶 )  ≤  0  ∧  ( ∅ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝐶 } ) ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  | 
						
						
							| 33 | 
							
								8 10 13 18 32
							 | 
							syl112anc | 
							⊢ ( ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  ∧  ( 0  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  | 
						
						
							| 34 | 
							
								1 3 4 5 7 33
							 | 
							ramub | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  ( 𝑀  Ramsey  𝐹 )  ≤  0 )  | 
						
						
							| 35 | 
							
								
							 | 
							ramubcl | 
							⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 0  ∈  ℕ0  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  0 ) )  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0 )  | 
						
						
							| 36 | 
							
								3 4 5 7 34 35
							 | 
							syl32anc | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0 )  | 
						
						
							| 37 | 
							
								
							 | 
							nn0le0eq0 | 
							⊢ ( ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0  →  ( ( 𝑀  Ramsey  𝐹 )  ≤  0  ↔  ( 𝑀  Ramsey  𝐹 )  =  0 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  ( ( 𝑀  Ramsey  𝐹 )  ≤  0  ↔  ( 𝑀  Ramsey  𝐹 )  =  0 ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							mpbid | 
							⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝐶  ∈  𝑅  ∧  ( 𝐹 ‘ 𝐶 )  =  0 ) )  →  ( 𝑀  Ramsey  𝐹 )  =  0 )  |