Metamath Proof Explorer


Theorem rankbnd

Description: The rank of a set is bounded by a bound for the successor of its members. (Contributed by NM, 18-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 𝐴 ∈ V
Assertion rankbnd ( ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 rankr1b.1 𝐴 ∈ V
2 1 rankval4 ( rank ‘ 𝐴 ) = 𝑥𝐴 suc ( rank ‘ 𝑥 )
3 2 sseq1i ( ( rank ‘ 𝐴 ) ⊆ 𝐵 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝐵 )
4 iunss ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝐵 )
5 3 4 bitr2i ( ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ 𝐵 )