Metamath Proof Explorer


Theorem rankbnd2

Description: The rank of a set is bounded by the successor of a bound for its members. (Contributed by NM, 15-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 𝐴 ∈ V
Assertion rankbnd2 ( 𝐵 ∈ On → ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rankr1b.1 𝐴 ∈ V
2 rankuni ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 )
3 1 rankuni2 ( rank ‘ 𝐴 ) = 𝑥𝐴 ( rank ‘ 𝑥 )
4 2 3 eqtr3i ( rank ‘ 𝐴 ) = 𝑥𝐴 ( rank ‘ 𝑥 )
5 4 sseq1i ( ( rank ‘ 𝐴 ) ⊆ 𝐵 𝑥𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 )
6 iunss ( 𝑥𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 )
7 5 6 bitr2i ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ( rank ‘ 𝐴 ) ⊆ 𝐵 )
8 rankon ( rank ‘ 𝐴 ) ∈ On
9 8 onssi ( rank ‘ 𝐴 ) ⊆ On
10 eloni ( 𝐵 ∈ On → Ord 𝐵 )
11 ordunisssuc ( ( ( rank ‘ 𝐴 ) ⊆ On ∧ Ord 𝐵 ) → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) )
12 9 10 11 sylancr ( 𝐵 ∈ On → ( ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) )
13 7 12 bitrid ( 𝐵 ∈ On → ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) )