| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1b.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | rankuni | ⊢ ( rank ‘ ∪  𝐴 )  =  ∪  ( rank ‘ 𝐴 ) | 
						
							| 3 | 1 | rankuni2 | ⊢ ( rank ‘ ∪  𝐴 )  =  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) | 
						
							| 4 | 2 3 | eqtr3i | ⊢ ∪  ( rank ‘ 𝐴 )  =  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 ) | 
						
							| 5 | 4 | sseq1i | ⊢ ( ∪  ( rank ‘ 𝐴 )  ⊆  𝐵  ↔  ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  𝐵 ) | 
						
							| 6 |  | iunss | ⊢ ( ∪  𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  𝐵  ↔  ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  𝐵 ) | 
						
							| 7 | 5 6 | bitr2i | ⊢ ( ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  𝐵  ↔  ∪  ( rank ‘ 𝐴 )  ⊆  𝐵 ) | 
						
							| 8 |  | rankon | ⊢ ( rank ‘ 𝐴 )  ∈  On | 
						
							| 9 | 8 | onssi | ⊢ ( rank ‘ 𝐴 )  ⊆  On | 
						
							| 10 |  | eloni | ⊢ ( 𝐵  ∈  On  →  Ord  𝐵 ) | 
						
							| 11 |  | ordunisssuc | ⊢ ( ( ( rank ‘ 𝐴 )  ⊆  On  ∧  Ord  𝐵 )  →  ( ∪  ( rank ‘ 𝐴 )  ⊆  𝐵  ↔  ( rank ‘ 𝐴 )  ⊆  suc  𝐵 ) ) | 
						
							| 12 | 9 10 11 | sylancr | ⊢ ( 𝐵  ∈  On  →  ( ∪  ( rank ‘ 𝐴 )  ⊆  𝐵  ↔  ( rank ‘ 𝐴 )  ⊆  suc  𝐵 ) ) | 
						
							| 13 | 7 12 | bitrid | ⊢ ( 𝐵  ∈  On  →  ( ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ⊆  𝐵  ↔  ( rank ‘ 𝐴 )  ⊆  suc  𝐵 ) ) |