| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankr1b.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
rankuni |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |
| 3 |
1
|
rankuni2 |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| 4 |
2 3
|
eqtr3i |
⊢ ∪ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
| 5 |
4
|
sseq1i |
⊢ ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ) |
| 6 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ) |
| 7 |
5 6
|
bitr2i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) |
| 8 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
| 9 |
8
|
onssi |
⊢ ( rank ‘ 𝐴 ) ⊆ On |
| 10 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 11 |
|
ordunisssuc |
⊢ ( ( ( rank ‘ 𝐴 ) ⊆ On ∧ Ord 𝐵 ) → ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( 𝐵 ∈ On → ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |
| 13 |
7 12
|
bitrid |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |