Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1b.1 |
⊢ 𝐴 ∈ V |
2 |
|
rankuni |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ ( rank ‘ 𝐴 ) |
3 |
1
|
rankuni2 |
⊢ ( rank ‘ ∪ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
4 |
2 3
|
eqtr3i |
⊢ ∪ ( rank ‘ 𝐴 ) = ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) |
5 |
4
|
sseq1i |
⊢ ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ) |
6 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ) |
7 |
5 6
|
bitr2i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ) |
8 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
9 |
8
|
onssi |
⊢ ( rank ‘ 𝐴 ) ⊆ On |
10 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
11 |
|
ordunisssuc |
⊢ ( ( ( rank ‘ 𝐴 ) ⊆ On ∧ Ord 𝐵 ) → ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |
12 |
9 10 11
|
sylancr |
⊢ ( 𝐵 ∈ On → ( ∪ ( rank ‘ 𝐴 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |
13 |
7 12
|
bitrid |
⊢ ( 𝐵 ∈ On → ( ∀ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) ⊆ 𝐵 ↔ ( rank ‘ 𝐴 ) ⊆ suc 𝐵 ) ) |