| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rankr1b.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 | 1 | rankuniss | ⊢ ( rank ‘ ∪  𝐴 )  ⊆  ( rank ‘ 𝐴 ) | 
						
							| 3 | 2 | biantru | ⊢ ( ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ∪  𝐴 )  ↔  ( ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ∪  𝐴 )  ∧  ( rank ‘ ∪  𝐴 )  ⊆  ( rank ‘ 𝐴 ) ) ) | 
						
							| 4 |  | iunss | ⊢ ( ∪  𝑥  ∈  𝐴 suc  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 suc  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 5 | 1 | rankval4 | ⊢ ( rank ‘ 𝐴 )  =  ∪  𝑥  ∈  𝐴 suc  ( rank ‘ 𝑥 ) | 
						
							| 6 | 5 | sseq1i | ⊢ ( ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ∪  𝐴 )  ↔  ∪  𝑥  ∈  𝐴 suc  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 7 |  | rankon | ⊢ ( rank ‘ 𝑥 )  ∈  On | 
						
							| 8 |  | rankon | ⊢ ( rank ‘ ∪  𝐴 )  ∈  On | 
						
							| 9 | 7 8 | onsucssi | ⊢ ( ( rank ‘ 𝑥 )  ∈  ( rank ‘ ∪  𝐴 )  ↔  suc  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 10 | 9 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  ( rank ‘ ∪  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 suc  ( rank ‘ 𝑥 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 11 | 4 6 10 | 3bitr4ri | ⊢ ( ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  ( rank ‘ ∪  𝐴 )  ↔  ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ∪  𝐴 ) ) | 
						
							| 12 |  | eqss | ⊢ ( ( rank ‘ 𝐴 )  =  ( rank ‘ ∪  𝐴 )  ↔  ( ( rank ‘ 𝐴 )  ⊆  ( rank ‘ ∪  𝐴 )  ∧  ( rank ‘ ∪  𝐴 )  ⊆  ( rank ‘ 𝐴 ) ) ) | 
						
							| 13 | 3 11 12 | 3bitr4i | ⊢ ( ∀ 𝑥  ∈  𝐴 ( rank ‘ 𝑥 )  ∈  ( rank ‘ ∪  𝐴 )  ↔  ( rank ‘ 𝐴 )  =  ( rank ‘ ∪  𝐴 ) ) |