Metamath Proof Explorer


Theorem rankc1

Description: A relationship that can be used for computation of rank. (Contributed by NM, 16-Sep-2006)

Ref Expression
Hypothesis rankr1b.1 𝐴 ∈ V
Assertion rankc1 ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rankr1b.1 𝐴 ∈ V
2 1 rankuniss ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 )
3 2 biantru ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) )
4 iunss ( 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) ↔ ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
5 1 rankval4 ( rank ‘ 𝐴 ) = 𝑥𝐴 suc ( rank ‘ 𝑥 )
6 5 sseq1i ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ↔ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
7 rankon ( rank ‘ 𝑥 ) ∈ On
8 rankon ( rank ‘ 𝐴 ) ∈ On
9 7 8 onsucssi ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
10 9 ralbii ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ∀ 𝑥𝐴 suc ( rank ‘ 𝑥 ) ⊆ ( rank ‘ 𝐴 ) )
11 4 6 10 3bitr4ri ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) )
12 eqss ( ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) ↔ ( ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ∧ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) )
13 3 11 12 3bitr4i ( ∀ 𝑥𝐴 ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ( rank ‘ 𝐴 ) = ( rank ‘ 𝐴 ) )