Step |
Hyp |
Ref |
Expression |
1 |
|
rankr1b.1 |
⊢ 𝐴 ∈ V |
2 |
|
pwuni |
⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
3 |
1
|
uniex |
⊢ ∪ 𝐴 ∈ V |
4 |
3
|
pwex |
⊢ 𝒫 ∪ 𝐴 ∈ V |
5 |
4
|
rankss |
⊢ ( 𝐴 ⊆ 𝒫 ∪ 𝐴 → ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝒫 ∪ 𝐴 ) ) |
6 |
2 5
|
ax-mp |
⊢ ( rank ‘ 𝐴 ) ⊆ ( rank ‘ 𝒫 ∪ 𝐴 ) |
7 |
3
|
rankpw |
⊢ ( rank ‘ 𝒫 ∪ 𝐴 ) = suc ( rank ‘ ∪ 𝐴 ) |
8 |
6 7
|
sseqtri |
⊢ ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ ∪ 𝐴 ) |
9 |
8
|
a1i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ 𝐴 ) ⊆ suc ( rank ‘ ∪ 𝐴 ) ) |
10 |
1
|
rankel |
⊢ ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) |
11 |
|
eleq1 |
⊢ ( ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) ) |
12 |
10 11
|
syl5ibcom |
⊢ ( 𝑥 ∈ 𝐴 → ( ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) ) |
13 |
12
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ) |
14 |
|
rankon |
⊢ ( rank ‘ ∪ 𝐴 ) ∈ On |
15 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
16 |
14 15
|
onsucssi |
⊢ ( ( rank ‘ ∪ 𝐴 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) |
17 |
13 16
|
sylib |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → suc ( rank ‘ ∪ 𝐴 ) ⊆ ( rank ‘ 𝐴 ) ) |
18 |
9 17
|
eqssd |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( rank ‘ 𝑥 ) = ( rank ‘ ∪ 𝐴 ) → ( rank ‘ 𝐴 ) = suc ( rank ‘ ∪ 𝐴 ) ) |