Step |
Hyp |
Ref |
Expression |
1 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
2 |
|
onzsl |
⊢ ( ( rank ‘ 𝐴 ) ∈ On ↔ ( ( rank ‘ 𝐴 ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 ∨ ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) ) ) |
3 |
1 2
|
mpbi |
⊢ ( ( rank ‘ 𝐴 ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 ∨ ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) ) |
4 |
|
sdom0 |
⊢ ¬ 𝐴 ≺ ∅ |
5 |
|
fveq2 |
⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( cf ‘ ( rank ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) |
6 |
|
cf0 |
⊢ ( cf ‘ ∅ ) = ∅ |
7 |
5 6
|
eqtrdi |
⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( cf ‘ ( rank ‘ 𝐴 ) ) = ∅ ) |
8 |
7
|
breq2d |
⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ↔ 𝐴 ≺ ∅ ) ) |
9 |
4 8
|
mtbiri |
⊢ ( ( rank ‘ 𝐴 ) = ∅ → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
10 |
|
fveq2 |
⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → ( cf ‘ ( rank ‘ 𝐴 ) ) = ( cf ‘ suc 𝑥 ) ) |
11 |
|
cfsuc |
⊢ ( 𝑥 ∈ On → ( cf ‘ suc 𝑥 ) = 1o ) |
12 |
10 11
|
sylan9eqr |
⊢ ( ( 𝑥 ∈ On ∧ ( rank ‘ 𝐴 ) = suc 𝑥 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) = 1o ) |
13 |
|
nsuceq0 |
⊢ suc 𝑥 ≠ ∅ |
14 |
|
neeq1 |
⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → ( ( rank ‘ 𝐴 ) ≠ ∅ ↔ suc 𝑥 ≠ ∅ ) ) |
15 |
13 14
|
mpbiri |
⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → ( rank ‘ 𝐴 ) ≠ ∅ ) |
16 |
|
fveq2 |
⊢ ( 𝐴 = ∅ → ( rank ‘ 𝐴 ) = ( rank ‘ ∅ ) ) |
17 |
|
0elon |
⊢ ∅ ∈ On |
18 |
|
r1fnon |
⊢ 𝑅1 Fn On |
19 |
18
|
fndmi |
⊢ dom 𝑅1 = On |
20 |
17 19
|
eleqtrri |
⊢ ∅ ∈ dom 𝑅1 |
21 |
|
rankonid |
⊢ ( ∅ ∈ dom 𝑅1 ↔ ( rank ‘ ∅ ) = ∅ ) |
22 |
20 21
|
mpbi |
⊢ ( rank ‘ ∅ ) = ∅ |
23 |
16 22
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( rank ‘ 𝐴 ) = ∅ ) |
24 |
23
|
necon3i |
⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → 𝐴 ≠ ∅ ) |
25 |
|
rankvaln |
⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∅ ) |
26 |
25
|
necon1ai |
⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
27 |
|
breq2 |
⊢ ( 𝑦 = 𝐴 → ( 1o ≼ 𝑦 ↔ 1o ≼ 𝐴 ) ) |
28 |
|
neeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) |
29 |
|
0sdom1dom |
⊢ ( ∅ ≺ 𝑦 ↔ 1o ≼ 𝑦 ) |
30 |
|
vex |
⊢ 𝑦 ∈ V |
31 |
30
|
0sdom |
⊢ ( ∅ ≺ 𝑦 ↔ 𝑦 ≠ ∅ ) |
32 |
29 31
|
bitr3i |
⊢ ( 1o ≼ 𝑦 ↔ 𝑦 ≠ ∅ ) |
33 |
27 28 32
|
vtoclbg |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 1o ≼ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
34 |
26 33
|
syl |
⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → ( 1o ≼ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
35 |
24 34
|
mpbird |
⊢ ( ( rank ‘ 𝐴 ) ≠ ∅ → 1o ≼ 𝐴 ) |
36 |
15 35
|
syl |
⊢ ( ( rank ‘ 𝐴 ) = suc 𝑥 → 1o ≼ 𝐴 ) |
37 |
36
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ ( rank ‘ 𝐴 ) = suc 𝑥 ) → 1o ≼ 𝐴 ) |
38 |
12 37
|
eqbrtrd |
⊢ ( ( 𝑥 ∈ On ∧ ( rank ‘ 𝐴 ) = suc 𝑥 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 ) |
39 |
38
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 ) |
40 |
|
domnsym |
⊢ ( ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
41 |
39 40
|
syl |
⊢ ( ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
42 |
|
nlim0 |
⊢ ¬ Lim ∅ |
43 |
|
limeq |
⊢ ( ( rank ‘ 𝐴 ) = ∅ → ( Lim ( rank ‘ 𝐴 ) ↔ Lim ∅ ) ) |
44 |
42 43
|
mtbiri |
⊢ ( ( rank ‘ 𝐴 ) = ∅ → ¬ Lim ( rank ‘ 𝐴 ) ) |
45 |
25 44
|
syl |
⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ Lim ( rank ‘ 𝐴 ) ) |
46 |
45
|
con4i |
⊢ ( Lim ( rank ‘ 𝐴 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
47 |
|
r1elssi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
48 |
46 47
|
syl |
⊢ ( Lim ( rank ‘ 𝐴 ) → 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
49 |
48
|
sselda |
⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
50 |
|
ranksnb |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) ) |
51 |
49 50
|
syl |
⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( rank ‘ { 𝑥 } ) = suc ( rank ‘ 𝑥 ) ) |
52 |
|
rankelb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
53 |
46 52
|
syl |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝑥 ∈ 𝐴 → ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
54 |
|
limsuc |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ↔ suc ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
55 |
53 54
|
sylibd |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝑥 ∈ 𝐴 → suc ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) ) |
56 |
55
|
imp |
⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → suc ( rank ‘ 𝑥 ) ∈ ( rank ‘ 𝐴 ) ) |
57 |
51 56
|
eqeltrd |
⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( rank ‘ { 𝑥 } ) ∈ ( rank ‘ 𝐴 ) ) |
58 |
|
eleq1a |
⊢ ( ( rank ‘ { 𝑥 } ) ∈ ( rank ‘ 𝐴 ) → ( 𝑤 = ( rank ‘ { 𝑥 } ) → 𝑤 ∈ ( rank ‘ 𝐴 ) ) ) |
59 |
57 58
|
syl |
⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑤 = ( rank ‘ { 𝑥 } ) → 𝑤 ∈ ( rank ‘ 𝐴 ) ) ) |
60 |
59
|
rexlimdva |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) → 𝑤 ∈ ( rank ‘ 𝐴 ) ) ) |
61 |
60
|
abssdv |
⊢ ( Lim ( rank ‘ 𝐴 ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ⊆ ( rank ‘ 𝐴 ) ) |
62 |
|
snex |
⊢ { 𝑥 } ∈ V |
63 |
62
|
dfiun2 |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } |
64 |
|
iunid |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑥 } = 𝐴 |
65 |
63 64
|
eqtr3i |
⊢ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } = 𝐴 |
66 |
65
|
fveq2i |
⊢ ( rank ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ) = ( rank ‘ 𝐴 ) |
67 |
47
|
sselda |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ∪ ( 𝑅1 “ On ) ) |
68 |
|
snwf |
⊢ ( 𝑥 ∈ ∪ ( 𝑅1 “ On ) → { 𝑥 } ∈ ∪ ( 𝑅1 “ On ) ) |
69 |
|
eleq1a |
⊢ ( { 𝑥 } ∈ ∪ ( 𝑅1 “ On ) → ( 𝑦 = { 𝑥 } → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
70 |
67 68 69
|
3syl |
⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = { 𝑥 } → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
71 |
70
|
rexlimdva |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } → 𝑦 ∈ ∪ ( 𝑅1 “ On ) ) ) |
72 |
71
|
abssdv |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) |
73 |
|
abrexexg |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ V ) |
74 |
|
eleq1 |
⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } → ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ) ) |
75 |
|
sseq1 |
⊢ ( 𝑧 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } → ( 𝑧 ⊆ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) ) |
76 |
|
vex |
⊢ 𝑧 ∈ V |
77 |
76
|
r1elss |
⊢ ( 𝑧 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝑧 ⊆ ∪ ( 𝑅1 “ On ) ) |
78 |
74 75 77
|
vtoclbg |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ V → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) ) |
79 |
73 78
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ↔ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ⊆ ∪ ( 𝑅1 “ On ) ) ) |
80 |
72 79
|
mpbird |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) ) |
81 |
|
rankuni2b |
⊢ ( { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ) = ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) ) |
82 |
80 81
|
syl |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ ∪ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ) = ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) ) |
83 |
66 82
|
eqtr3id |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) ) |
84 |
|
fvex |
⊢ ( rank ‘ 𝑧 ) ∈ V |
85 |
84
|
dfiun2 |
⊢ ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) = ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } 𝑤 = ( rank ‘ 𝑧 ) } |
86 |
|
fveq2 |
⊢ ( 𝑧 = { 𝑥 } → ( rank ‘ 𝑧 ) = ( rank ‘ { 𝑥 } ) ) |
87 |
62 86
|
abrexco |
⊢ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } 𝑤 = ( rank ‘ 𝑧 ) } = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } |
88 |
87
|
unieqi |
⊢ ∪ { 𝑤 ∣ ∃ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } 𝑤 = ( rank ‘ 𝑧 ) } = ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } |
89 |
85 88
|
eqtri |
⊢ ∪ 𝑧 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = { 𝑥 } } ( rank ‘ 𝑧 ) = ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } |
90 |
83 89
|
eqtr2di |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } = ( rank ‘ 𝐴 ) ) |
91 |
46 90
|
syl |
⊢ ( Lim ( rank ‘ 𝐴 ) → ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } = ( rank ‘ 𝐴 ) ) |
92 |
|
fvex |
⊢ ( rank ‘ 𝐴 ) ∈ V |
93 |
92
|
cfslb |
⊢ ( ( Lim ( rank ‘ 𝐴 ) ∧ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ⊆ ( rank ‘ 𝐴 ) ∧ ∪ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } = ( rank ‘ 𝐴 ) ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ) |
94 |
61 91 93
|
mpd3an23 |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ) |
95 |
|
2fveq3 |
⊢ ( 𝑦 = 𝐴 → ( cf ‘ ( rank ‘ 𝑦 ) ) = ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
96 |
|
breq12 |
⊢ ( ( 𝑦 = 𝐴 ∧ ( cf ‘ ( rank ‘ 𝑦 ) ) = ( cf ‘ ( rank ‘ 𝐴 ) ) ) → ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) ↔ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) ) |
97 |
95 96
|
mpdan |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) ↔ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) ) |
98 |
|
rexeq |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) ) ) |
99 |
98
|
abbidv |
⊢ ( 𝑦 = 𝐴 → { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ) |
100 |
|
breq12 |
⊢ ( ( { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } = { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ∧ 𝑦 = 𝐴 ) → ( { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ↔ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
101 |
99 100
|
mpancom |
⊢ ( 𝑦 = 𝐴 → ( { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ↔ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
102 |
97 101
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ) ↔ ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) ) |
103 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) = ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) |
104 |
103
|
rnmpt |
⊢ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) = { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } |
105 |
|
cfon |
⊢ ( cf ‘ ( rank ‘ 𝑦 ) ) ∈ On |
106 |
|
sdomdom |
⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → 𝑦 ≼ ( cf ‘ ( rank ‘ 𝑦 ) ) ) |
107 |
|
ondomen |
⊢ ( ( ( cf ‘ ( rank ‘ 𝑦 ) ) ∈ On ∧ 𝑦 ≼ ( cf ‘ ( rank ‘ 𝑦 ) ) ) → 𝑦 ∈ dom card ) |
108 |
105 106 107
|
sylancr |
⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → 𝑦 ∈ dom card ) |
109 |
|
fvex |
⊢ ( rank ‘ { 𝑥 } ) ∈ V |
110 |
109 103
|
fnmpti |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) Fn 𝑦 |
111 |
|
dffn4 |
⊢ ( ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) Fn 𝑦 ↔ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) ) |
112 |
110 111
|
mpbi |
⊢ ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) |
113 |
|
fodomnum |
⊢ ( 𝑦 ∈ dom card → ( ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) : 𝑦 –onto→ ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) → ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) ≼ 𝑦 ) ) |
114 |
108 112 113
|
mpisyl |
⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → ran ( 𝑥 ∈ 𝑦 ↦ ( rank ‘ { 𝑥 } ) ) ≼ 𝑦 ) |
115 |
104 114
|
eqbrtrrid |
⊢ ( 𝑦 ≺ ( cf ‘ ( rank ‘ 𝑦 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝑦 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝑦 ) |
116 |
102 115
|
vtoclg |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
117 |
46 116
|
syl |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) ) |
118 |
|
domtr |
⊢ ( ( ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ∧ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) → ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ 𝐴 ) |
119 |
118 40
|
syl |
⊢ ( ( ( cf ‘ ( rank ‘ 𝐴 ) ) ≼ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ∧ { 𝑤 ∣ ∃ 𝑥 ∈ 𝐴 𝑤 = ( rank ‘ { 𝑥 } ) } ≼ 𝐴 ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
120 |
94 117 119
|
syl6an |
⊢ ( Lim ( rank ‘ 𝐴 ) → ( 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) ) |
121 |
120
|
pm2.01d |
⊢ ( Lim ( rank ‘ 𝐴 ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
122 |
121
|
adantl |
⊢ ( ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
123 |
9 41 122
|
3jaoi |
⊢ ( ( ( rank ‘ 𝐴 ) = ∅ ∨ ∃ 𝑥 ∈ On ( rank ‘ 𝐴 ) = suc 𝑥 ∨ ( ( rank ‘ 𝐴 ) ∈ V ∧ Lim ( rank ‘ 𝐴 ) ) ) → ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) ) |
124 |
3 123
|
ax-mp |
⊢ ¬ 𝐴 ≺ ( cf ‘ ( rank ‘ 𝐴 ) ) |