Metamath Proof Explorer


Theorem rankdmr1

Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankdmr1 ( rank ‘ 𝐴 ) ∈ dom 𝑅1

Proof

Step Hyp Ref Expression
1 rankidb ( 𝐴 ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) )
2 elfvdm ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 )
3 1 2 syl ( 𝐴 ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 )
4 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
5 4 simpri Lim dom 𝑅1
6 limsuc ( Lim dom 𝑅1 → ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) )
7 5 6 ax-mp ( ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ↔ suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 )
8 3 7 sylibr ( 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ∈ dom 𝑅1 )
9 rankvaln ( ¬ 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) = ∅ )
10 limomss ( Lim dom 𝑅1 → ω ⊆ dom 𝑅1 )
11 5 10 ax-mp ω ⊆ dom 𝑅1
12 peano1 ∅ ∈ ω
13 11 12 sselii ∅ ∈ dom 𝑅1
14 9 13 eqeltrdi ( ¬ 𝐴 ( 𝑅1 “ On ) → ( rank ‘ 𝐴 ) ∈ dom 𝑅1 )
15 8 14 pm2.61i ( rank ‘ 𝐴 ) ∈ dom 𝑅1